86BR 86SE B- DECAY (14.3 S) 2016UR04 25NDS 202507
86BR H TYP=FUL$AUT=A. Negret and B. Singh$CIT=NDS 203, 283 (2025)$
86BR2 H CUT=20-Jan-2025$
86BR c 2016Ur04: {+86}Se produced in the fission of {+235}U induced by
86BR2c thermal neutrons from PF1B-ILL-Grenoble facility, and separated using
86BR2c Lohengrin fission-fragment separator. The cumulative yield for {+86}Se
86BR3c was 1.2%. Measured E|g, I|g, |g|g-coin using an array of Ge
86BR4c detectors at ILL-Grenoble. Deduced levels, J|p, configurations.
86BR5c Comparison with large-scale shell-model calculations
86BR c 1980Ze04 (also 1978ZeZZ): Measured E|g, I|g, |g|g-coin at Mainz reactor
86BR2c facility. A total of 21 |g rays from 48.3 keV to 2660.0 keV were
86BR3c reported with relative intensities. Absolute intensities (I|g/100
86BR4c decays) were also deduced with reference to I|g(absolute)=63% for
86BR5c the 1564.7|g from {+86}Br to {+86}Kr decay. Uncertainties for E|g
86BR6c values were stated as 0.3 keV for stronger and 0.5 keV for weaker
86BR7c |g rays. No intensities were given for I|g values.
86BR c Others:
86BR c 1982Li09: measured absolute |g intensity (per 100 decays of {+86}Se)
86BR2c for the 1399|g using a continuous gas-phase rapid chemistry
86BR3c system, with reference to 1565|g from the decay of {+86}Br.
86BR c 1977Pf01: eight |g rays reported from 47.6 keV to 2661.0 keV with
86BR2c intensities. Half-life of {+86}Se measured as 14 s {I2} using LOHENGRIN
86BR3c mass separator
86BR c 1975Hu02: measured half-life of {+86}Se decay as 14.4 s {I10} from
86BR2c average of decay curves for seven |g rays. Seven |g rays reported from
86BR3c 788 keV to 2662 keV with I|g values.
86BR c 1973Ta19: eight |g rays reported from 49 to 1400 keV, with intensities
86BR2c and half-lives of {+86}Se decay. Three half-lives measured were:
86BR3c 14.4 s {I20} for 49.0|g, 14.3 s {I5} for 154.3|g and 15.9 s {I12} for
86BR4c 207.7|g. Four other half-lives measured were listed without
86BR5c uncertainties. Strong |g rays reported at 941.3 keV (I|g=237);
86BR6c 1081.1 keV (I|g=257); 1208.3 keV (I|g=293) and 1340.2 keV (I|g=188)
86BR7c were not confirmed in later studies of this decay.
86BR c 1960Sa05: measured half-life of a 16 s {I3} activity which was
86BR2c assigned by 1960Sa05 due to {+86}Se or {+87}Se. However, known
86BR3c half-life of 5.50 s {I14} for {+87}Se in ENSDF database (July 2015
86BR4c update) favors the assignment of activity to {+86}Se.
86BR c Based on the observed growth curve for {+86}Br in beam ON and OFF
86BR2c cycles, 2016Ur04 found no evidence for the existence of a low-energy
86BR3c 5-s isomer in {+86}Br proposed by 1970Lu06
86BR c Theory for {+86}Se decay: 2015Sa14.
86BR d Other theory references for {+86}Se decay: 2007Na28, 1981Al25.
86BR cB IB$From transition intensity balance at each level. 2016Ur04
86BR2cB give I|b=-0.2 {I2} for 1622 level, evaluators obtain zero feeding.
86BR3cB Note that for the following four levels, evaluators obtain small
86BR4cB (non-physical) negative |b feedings: -0.25% {I13} for 130 level,
86BR5cB -0.70% {I15} for 785 level, -1.58 {I22} for 935 level, and -0.23 {I8}
86BR6cB for 1545 level. For 130 and 1545 levels, no |b feedings are expected
86BR7cB from |DJ|p.
86BR cB IB(X)$Intensity balance is consistent with zero feeding, as expected
86BR2cB from proposed J|p values.
86BR cG $The decay scheme is as proposed by 2016Ur04, that was built on
86BR2cG previous incomplete decay scheme from 1980Ze04. It appears fairly
86BR3cG complete, but with Q value of 5129 keV and the highest populated
86BR4cG level at 3365 keV, there still remains the possibility of some missed
86BR5cG |g transitions from levels above the 3365-keV level.
86BR cG $According to e-mail reply of May 04, 2023 from W. Urban, first author
86BR2cG of 2016Ur04, all the |g rays were seen in |g|g-coin data, except, those
86BR3cG the non-cascading ones which proceed directly to the g.s. and/or the
86BR4cG 4.4-keV level. Some of |g|g-coin relationships were also given in
86BR5cG 1980Ze04
86BR cG $The main remaining point of concern regards the |g-normalization
86BR2cG factor used to deduce direct |b feeding to the ground state of {+86}Br
86BR3cG and I|g values per 100 decays, as the present normalization factor is
86BR4cG taken from an absolute I|g value for a 1399-keV transition listed
86BR5cG without uncertainty and from an incomplete and discordant decay scheme
86BR6cG by 1980Ze04, as compared to that in 2016Ur04. Second value of absolute
86BR7cG I|g determined by 1982Li09 is also listed without uncertainty, with
86BR8cG no decay scheme discussed.
86BR cG $Total energy deposit in the present decay scheme is 5200 keV {I300}
86BR2cG in reasonable agreement with expected value of 5129 keV {I4}, which
86BR3cG suggests the decay scheme to be close to being complete.
86BR cG E,RI$From 2016Ur04
86BR cG $The total conversion coefficients for the 77.80, 153.91 and 166.96 keV
86BR2cG transitions deduced by 2016Ur04 from transition intensity balances in
86BR3cG relevant coincidence-gated spectra
86BR cG M(Y),MR(Y)$Deduced by evaluators from |a(total)(exp) given by 2016Ur04
86BR cL $Most levels are identified by 2016Ur04 as members of
86BR2cL (|pf{-5/2}{+-1},|nd{-5/2}) and (|pp{-3/2},|nd{-5/2}) multiplets
86BR cL E$From a least-squares fit procedure. Only two
86BR2cL |g rays fit somewhat poorly, as pointed out in comments
86BR cL J$From the Adopted Levels. 2016Ur04 assigned definite J|p values for
86BR2cL many levels, based on shell-model predictions, |g-decay characteristics
86BR3cL and log| {Ift} values from 0+ parent. However, following strong rules
86BR4cL for assignment of J|p values in the ENSDF database, many of these
86BR5cL assignments can only be assigned tentatively, thus placed in
86BR6cL parentheses, as detailed in the Adopted Levels. Assignments proposed
86BR7cL by 2016Ur04, when different, are listed in comments.
86BR cL T$from Adopted Levels.
86SE P 0.0 0+ 14.3 S 3 5129 4
86SE cP T$From {+86}Se Adopted Levels
86SE cP QP$From 2021Wa16
86BR N 0.155 10 0.155 10 1.0 1.0
86BR cN NR$I|g(1399.6|g)=5.8 {I3} per 100 decays of the parent, deduced from
86BR2cN unweighted average of I|g(1399.6)/I|g(1564.8|g)=5.8/63 (1980Ze04), and
86BR3cN 6.2/62 (1982Li09), and readjustment of absolute I|g=60.6% {I24}
86BR4cN for the 1564.8|g from {+86}Br decay (see dataset for {+86}Br |b{+-}
86BR5cN decay to {+86}Kr).
86BR PN 3
86BR L 0.0 1- 55.1 S 5
86BR cL J$1- (2016Ur04)
86BR B 32 5 5.80 8
86BRS B EAV=2291.6 19
86BR cB IB$39 {I4} (2016Ur04).
86BR L 4.372 28 (2-)
86BR cL J$2- (2016Ur04)
86BR B 2 2 8.4 GT 1U?
86BRS B EAV=2283.5 19
86BR cB IB$assumed value of 2 {I2} in 2016Ur04.
86BR G 4.372 28 2.56 13 (M1) 130 4 335 13 S
86BRS G LC=110.7 28$MC=17.6 4 $ NC=1.61 4
86BR2 G %IG=0.40 3
86BR cG E$from level-energy
86BR cG TI$deduced by evaluators from intensity balance at 4.37 level, assuming
86BR2cG the level decays only by a gamma transition, which is mostly converted
86BR cG RI$from I(|g+ce) and |a(theory) for M1
86BR cG M$proposed by evaluators as (M1) analogous to known dominant M1
86BR2cG transitions between the first excited state and the g.s. in the
86BR3cG neighboring N=51 isotones {+84}As, {+88}Rb and {+90}Y (as compiled in
86BR4cG the ENSDF and XUNDL database from references relevant to these nuclei).
86BR5cG Small E2 admixture is possible
86BR L 53.076 29 (3-)
86BR cL J$3- (2016Ur04)
86BR B X ?
86BR cB IB$0.2 {I24} in 2016Ur04. Evaluators obtain 1.5 {I20}
86BR G 48.71 5 79.0 60 M1(+E2) 0.1 LT 0.92 6 C
86BRS G KC=0.81 5$LC=0.097 11$MC=0.0154 17
86BRS G NC=0.00139 13
86BR2 G %IG=12.2 12
86BR cG $E|g=48.3 {I3}, I|g=35.7 (1980Ze04)
86BR cG $E|g=47.6 {I3}, I|g=9.0 (1977Pf01)
86BR cG $E|g=49.0, I|g=15 (1973Ta19)
86BR cG M,MR$from |a(exp)=0.9 {I1} in ({+18}O,F|g) (2009Po10)
86BR cG CC$note that 2016Ur04 use a value of 0.889 {I21} which was a
86BR2cG value given in literature for E|g=48.3 {I3}
86BR G 53.1 0.08 LT ?
86BR2 G %IG LT 0.0124
86BR cG E$this |g not observed, only an upper limit of I|g<0.08 is given
86BR2cG by 2016Ur04
86BR L 130.89 5 (4-)
86BR cL J$4- (2016Ur04)
86BR B X ?
86BR cB IB$0.0 {I4} in 2016Ur04. Evaluators obtain -0.25 {I13}
86BR G 77.80 5 6.6 4 M1+E2 0.18 +6-9 0.29 5 YC
86BR2 G ECC=0.29 5 (2016Ur04)
86BRS G KC=0.26 4$LC=0.031 7$MC=0.0050 10
86BRS G NC=0.00045 8
86BR2 G %IG=1.02 9
86BR L 207.019 25 (2-)
86BR cL J$2- (2016Ur04)
86BR B 1.2 7 8.94 +39-21 1U
86BRS B EAV=2186.4 19
86BR cB IB$1.2 {I6} in 2016Ur04
86BR G 153.91 5 27.7 9 E2+M1 10 9 0.18 7 YC
86BR2 G %IG=4.29 31
86BR cG $E|g=154.2 {I3}, I|g=7.0 (1980Ze04)
86BR cG $E|g=156.5 {I3}, I|g=3.5 (1977Pf01)
86BR cG $E|g=154.3, I|g=30 (1973Ta19)
86BR2 G ECC=0.18 7 (2016Ur04)
86BRS G KC=0.15 6$LC=0.019 8$MC=0.0031 12
86BRS G NC=2.7E-4 11
86BR G 202.66 5 1.7 5 [M1+E2] 0.041 24 C
86BRS G KC=0.036 21$LC=0.0042 25$MC=7.E-4 4
86BRS G NC=6.0E-5 35
86BR2 G %IG=0.26 8
86BR G 207.04 5 61.5 25 [M1+E2] 0.038 22 C
86BRS G KC=0.034 19$LC=0.0039 23$MC=6.E-4 4
86BRS G NC=5.6E-5 32
86BR2 G %IG=9.5 7
86BR cG $E|g=207.5 {I3}, I|g=18.1 (1980Ze04)
86BR cG $E|g=207.5 {I3}, I|g=6.0 (1977Pf01)
86BR cG $E|g=207.7, I|g=100 (1973Ta19)
86BR L 244.17 15 (4-)
86BR cL J$4- (2016Ur04)
86BR B X ?
86BR cB IB$0.0 {I4} in 2016Ur04. Evaluators obtain -0.11 {I16}
86BR G 191.1 2 0.4 2 [M1+E2] 0.050 30 C
86BRS G KC=0.044 26$LC=0.0052 32$MC=8.E-4 5
86BRS G NC=7.E-5 4
86BR2 G %IG=0.062 31
86BR L 297.858 33 (3-)
86BR cL J$3- (2016Ur04)
86BR B 0.58 30 11.1 +3-2 ?
86BRS B EAV=2150.0 19
86BR cB IB$0.2 {I3} (2016Ur04). Evaluators obtain 0.58 {I30}. No feeding is
86BR2cB expected for this level. The imbalance is most likely due to
86BR3cB lack of knowledge about mixing ratios and consequently appropriate
86BR4cB conversion coefficients
86BR G 53.7 2 0.2 1 [M1+E2] 4.6 40
86BRS G KC=3.7 32$LC=0.8 7$MC=0.12 11
86BRS G NC=0.009 8
86BR2 G %IG=0.031 16
86BR G 90.90 7 1.6 2 [M1+E2] 0.7 6 C
86BRS G KC=0.6 5$LC=0.09 7$MC=0.014 11
86BRS G NC=0.0011 9
86BR2 G %IG=0.248 35
86BR G 166.96 5 9.2 3 E2+M1 1.6 10 0.10 5 YC
86BR2 G ECC=0.10 5 (2016Ur04)
86BRS G KC=0.09 4$LC=0.011 5$MC=0.0017 8
86BRS G NC=1.5E-4 7
86BR2 G %IG=1.43 10
86BR G 244.75 9 1.5 2 [M1+E2] 0.022 11 C
86BRS G KC=0.019 10$LC=0.0022 11$MC=3.5E-4 18
86BRS G NC=3.1E-5 16
86BR2 G %IG=0.233 35
86BR G 293.51 5 15.6 7 [M1+E2] 0.012 5 C
86BRS G KC=0.011 5$LC=0.0012 5$MC=1.9E-4 8
86BRS G NC=1.7E-5 7
86BR2 G %IG=2.42 19
86BR cG $E|g=293.2 {I5}, I|g=2.4 (1980Ze04)
86BR L 435.177 26 (2-)
86BR cL J$2- (2016Ur04)
86BR B 2.1 7 8.57 +19-14 1U
86BRS B EAV=2077.1 19
86BR cB IB$3.3 {I7} in 2016Ur04
86BR G 137.35 8 1.1 2 [M1+E2] 0.16 11 C
86BRS G KC=0.14 10$LC=0.018 13$MC=0.0028 20
86BRS G NC=2.4E-4 17
86BR2 G %IG=0.171 33
86BR G 228.20 5 16.7 7 [M1+E2] 0.027 15 C
86BRS G KC=0.024 13$LC=0.0028 15$MC=4.4E-4 24
86BRS G NC=4.0E-5 21
86BR2 G %IG=2.59 20
86BR cG $E|g=228.4 {I5}, I|g=3.9 (1980Ze04)
86BR G 382.10 5 54.8 23 [M1+E2] 0.0053 17 C
86BRS G KC=0.0047 15$LC=5.2E-4 17$MC=8.2E-5 27
86BRS G NC=7.5E-6 24
86BR2 G %IG=8.5 7
86BR cG $E|g=382.4 {I3}, I|g=17.8 (1980Ze04)
86BR G 430.81 5 9.1 5 [M1+E2] 0.0037 10 C
86BRS G KC=0.0033 9$LC=3.6E-4 10$MC=5.7E-5 16
86BRS G NC=5.3E-6 14
86BR2 G %IG=1.41 12
86BR cG $E|g=430.5 {I5}, I|g=2.3 (1980Ze04)
86BR G 435.15 5 4.9 9 [M1+E2] 0.0036 10 C
86BRS G KC=0.0032 8$LC=3.5E-4 10$MC=5.6E-5 15
86BRS G NC=5.1E-6 14
86BR2 G %IG=0.76 15
86BR cG $E|g=435.5 {I5}, I|g=1.8 (1980Ze04)
86BR L 569.778 30 (1-,2-)
86BR cL J$1-,2- (2016Ur04)
86BR B 1.44 20 6.92 8
86BRS B EAV=2017.1 19
86BR cB IB$3.0 {I3} in 2016Ur04
86BR G 271.92 5 15.6 7 [M1+E2] 0.015 7 C
86BRS G KC=0.014 6$LC=0.0015 7$MC=2.4E-4 12
86BRS G NC=2.2E-5 10
86BR2 G %IG=2.42 19
86BR G 362.70 7 2.5 2 [M1+E2] 0.0062 21 C
86BRS G KC=0.0055 19$LC=6.1E-4 22$MC=9.6E-5 34
86BRS G NC=8.8E-6 30
86BR2 G %IG=0.39 4
86BR G 516.70 5 8.9 4 [M1,E2] 0.0022 5 C
86BRS G KC=0.0020 4$LC=0.00021 5$MC=3.4E-5 7
86BRS G NC=3.2E-6 6
86BR2 G %IG=1.38 11
86BR G 565.40 7 3.0 2 C
86BR2 G %IG=0.47 4
86BR G 569.80 7 3.1 2 C
86BR2 G %IG=0.48 4
86BR L 785.583 35 (0-)
86BR cL J$0-,1- (2016Ur04)
86BR B X ?
86BR cB IB$0.2 {I1} in 2016Ur04. Evaluators obtain -0.70 {I15}
86BR G 785.55 5 4.2 5 C
86BR2 G %IG=0.65 9
86BR cG $E|g=788.1 {I11}, I|g=4.3 {I4} (1975Hu02)
86BR L 809.185 29 (0-,1,2-)
86BR cL J$1-,2 (2016Ur04)
86BR B 0.92 22 7.01 +13-10
86BRS B EAV=1901.9 19
86BR cB IB$2.0 {I3} (2016Ur04)
86BR G 374.05 5 1.2 4 [D,E2] 0.0047 28 C
86BR2 G %IG=0.19 6
86BR G 602.12 5 1.5 3 [D,E2] C
86BR2 G %IG=0.23 5
86BR G 804.80 5 6.2 5 [D,E2] 0.0005523 C
86BR2 G %IG=0.96 10
86BR G 809.15 5 7.0 5 [D,E2] 0.0005424 C
86BR2 G %IG=1.09 11
86BR L 935.084 32 (0-,1,2)
86BR cL J$1-,2 (2016Ur04). J|p=0-,1 may be less likely from no evidence of |b
86BR2cL feeding from 0+ parent
86BR B X ?
86BR cB IB$0.0 {I8} in 2016Ur04. Evaluators obtain -1.58 {I22}
86BR G 728.07 6 0.5 1 C
86BR2 G %IG=0.078 16
86BR G 930.65 5 2.0 5 C
86BR2 G %IG=0.31 8
86BR G 935.02 6 0.8 1 C
86BR2 G %IG=0.124 18
86BR L 1047.261 30 (2-)
86BR B 0.30 30 8.6 GE X1U?
86BRS B EAV=1785.2 19
86BR cB IB$0.6 {I3} in 2016Ur04. Evaluators obtain 0.30 {I30}
86BR G 477.44 8 1.2 2 C
86BR2 G %IG=0.186 33
86BR G 612.10 8 1.7 3 C
86BR2 G %IG=0.26 5
86BR cG $E|g=611.6 {I5}, I|g=0.7 (1980Ze04)
86BR G 749.50 9 6.9 3 [M1+E2] 0.00086 8 C
86BRS G KC=0.00076 7$LC=8.1E-5 8$MC=1.28E-5 13
86BRS G NC=1.20E-6 11
86BR2 G %IG=1.07 8
86BR cG $E|g=749.0 {I5}, I|g=2.5 (1980Ze04)
86BR G 840.20 5 3.0 3 C
86BR2 G %IG=0.47 6
86BR cG $E|g=839.8 {I5}, I|g=0.7 (1980Ze04)
86BR G 994.18 5 19.9 9 [M1+E2] 4.44E-420 C
86BRS G KC=0.000396 17$LC=4.16E-5 20$MC=6.61E-6 32
86BRS G NC=6.19E-7 28
86BR2 G %IG=3.09 24
86BR cG $E|g=993.8 {I3}, I|g=7.7 (1980Ze04)
86BR G 1042.91 7 4.5 3 C
86BR2 G %IG=0.70 7
86BR cG $E|g=1042.0 {I5}, I|g=1.8 (1980Ze04)
86BR G 1047.41 9 4.2 3 C
86BR2 G %IG=0.65 6
86BR cG $E|g=1047.1 {I5}, I|g=0.8 (1980Ze04)
86BR L 1329.382 33 (1-)
86BR cL J$(1-,2) in 2016Ur04
86BR B 1.85 18 6.46 6
86BRS B EAV=1652.3 19
86BR cB IB$1.9 {I2} in 2016Ur04
86BR G 759.72 6 2.8 2 C
86BR2 G %IG=0.43 4
86BR G 894.19 6 3.5 3 C
86BR2 G %IG=0.54 6
86BR G 1031.30 9 2.1 3 C
86BR2 G %IG=0.33 5
86BR G 1122.20 7 1.9 3 C
86BR2 G %IG=0.30 5
86BR G 1276.33 5 9.8 4 [E2] 2.87E-4 4 C
86BR2 G %IG=1.52 12
86BR cG $E|g=1275.8 {I3}, I|g=5.1 (1980Ze04), placed from 2446 level,
86BR2cG with reversed ordering of the 1117.5|g-1276.3|g cascade
86BR G 1325.00 7 0.8 2 C
86BR2 G %IG=0.124 32
86BR L 1488.66 7 (0-,1,2,3+)
86BR cL J$2,3 (2016Ur04). J|p=0-,1 may be less likely from little or no |b
86BR2cL feeding from 0+ parent
86BR B 0.08 7 7.7 +9-3 X ?
86BRS B EAV=1576.0 19
86BR cB IB$0.1 {I1} in 2016Ur04. Evaluators obtain 0.08 {I7}
86BR G 1053.3 1 1.0 2 C
86BR2 G %IG=0.155 33
86BR G 1281.7 1 1.1 2 C
86BR2 G %IG=0.171 33
86BR L 1545.78 5 (1-,2,3+)
86BR cL J$2,3+ (2016Ur04). J|p=1- may be less likely from no evidence of |b
86BR2cL feeding from 0+ parent
86BR B X ?
86BR cB IB$0.0 {I2} in 2016Ur04. Evaluators obtain -0.23 {I8}
86BR G 1248.00 9 0.4 1 C
86BR2 G %IG=0.062 16
86BR G 1492.78 7 3.9 3 C
86BR2 G %IG=0.61 6
86BR L 1622.17 7 (1-,2,3+)
86BR cL J$2,3+ (2016Ur04). J|p=1- may be less likely from no evidence of |b
86BR2cL feeding from 0+ parent
86BR B X ?
86BR cB IB$-0.2 {I2} in 2016Ur04. Evaluators obtain 0.0
86BR G 1324.36 7 1.0 3 C
86BR2 G %IG=0.16 5
86BR L 2159.91 5 (0-,1)
86BR cL J$1-,2 (2016Ur04)
86BR B 1.69 15 6.03 5
86BR cB IB$1.5 {I1} in 2016Ur04
86BRS B EAV=1256.3 19
86BR G 1590.05 7 7.2 3 C
86BR2 G %IG=1.12 9
86BR G 1724.63 12 1.1 2 C
86BR2 G %IG=0.171 33
86BR cG E,RI$from e-mail reply of May 04, 2023 from W. Urban, first
86BR2cG author of 2016Ur04. This transition is shown in authors' level-scheme
86BR3cG Fig. 3, but not in Table I.
86BR G 1952.93 5 5.3 4 C
86BR2 G %IG=0.82 8
86BR L 2446.937 26 1+
86BR cL J$proposed Gamow-Teller transition of |ng{-7/2} to |pg{-9/2}
86BR2cL (2016Ur04); from shell-model calculations, |ng{-7/2} orbital
86BR3cL contributes 8% to the configuration of the g.s. of {+86}Se,
86BR4cL and probable configuration of |ng{-7/2}~#|pg{-9/2} for the 2447,
86BR5cL 1+ level, as compared to less likely configuration of
86BR6cL |np{-1/2}{+-1}~#|pp{-3/2} proposed by 1976Bu05 and 1979Du04 for
86BR7cL other N=51 isotones. J|p=1+ (or 2+) predicted in shell-model
86BR8cL calculations (2016Ur04) at |?2.5 MeV.
86BR B 46.0 31 4.41 3
86BR cB IB$45 {I2} in 2016Ur04
86BRS B EAV=1120.6 19
86BR G 287.10 15 2.7 3 [D,E2] 0.011 7 C
86BR2 G %IG=0.42 5
86BR G 824.90 15 0.7 3 C
86BR2 G %IG=0.11 5
86BR G 901.22 6 4.5 3 C
86BR2 G %IG=0.70 7
86BR G 1117.50 6 8.3 4 [E1] 1.71E-4 3 C
86BR2 G %IG=1.29 10
86BR cG $E|g=1117.0 {I3}, I|g=7.0 (1980Ze04), placed from a 1170.4 level,
86BR2cG with reversed ordering of the 1117.5|g-1276.3|g cascade
86BR cG $E|g=1118.3 {I8}, I|g=5.2 {I5} (1975Hu02)
86BR G 1399.62 5 37.5 15 [E1] 2.84E-4 4 C
86BRS G KC=9.58E-5 13$LC=9.94E-6 14$MC=1.576E-6 22
86BRS G NC=1.478E-7 21$IPC=0.0001768 25
86BR2 G %IG=5.8 3
86BR cG $Measured I|g(1399.6|g)/I|g(1565|g from {+86}Br decay)=0.062/0.62
86BR2cG (1982Li09)
86BR cG $E|g=1399.0 {I3}, I|g=13.3 (1980Ze04)
86BR cG $E|g=1399.0 {I10}, I|g=20.0 (1977Pf01)
86BR cG $E|g=1400.3 {I6}, I|g=13.8 {I14} (1975Hu02)
86BR cG $E|g=1399.9, I|g=108 (1973Ta19)
86BR G 1511.81 5 10.0 10 [D,E2] 0.00032 4 C
86BR2 G %IG=1.55 19
86BR G 1637.68 5 7.5 9 [D,E2] 0.00037 7 C
86BR2 G %IG=1.16 16
86BR G 1661.35 5 6.0 6 [E1] 4.59E-4 6 C
86BRS G KC=7.23E-5 10$LC=7.48E-6 10$MC=1.187E-6 17
86BRS G NC=1.114E-7 16$IPC=0.000378 5
86BR2 G %IG=0.93 11
86BR G 1877.10 9 2.7 3 C
86BR2 G %IG=0.42 5
86BR G 2011.73 5 59.7 30 [E1] 6.97E-410 C
86BRS G KC=5.38E-5 8$LC=5.55E-6 8$MC=8.81E-7 12
86BRS G NC=8.27E-8 12$IPC=0.000637 9
86BR2 G %IG=9.3 8
86BR cG $E|g=2010.6 {I3}, I|g=23.7 (1980Ze04)
86BR cG $E|g=2012.0 {I10}, I|g=17.0 (1977Pf01)
86BR cG $E|g=2012.4 {I6}, I|g=24.3 {I24} (1975Hu02)
86BR G 2239.92 5 50.8 22 [E1] 8.43E-412 C
86BRS G KC=4.59E-5 6$LC=4.73E-6 7$MC=7.51E-7 11
86BRS G NC=7.05E-8 10$IPC=0.000792 11
86BR2 G %IG=7.9 6
86BR cG $E|g=2239.0 {I3}, I|g=17.9 (1980Ze04)
86BR cG $E|g=2241.0 {I10}, I|g=15.0 (1977Pf01)
86BR cG $E|g=2241.6 {I6}, I|g=17.1 {I27} (1975Hu02)
86BR G 2393.80 6 1.1 2 C
86BR2 G %IG=0.171 33
86BR G 2442.55 5 100.0 30 [E1] 9.65E-414
86BRS G KC=4.05E-5 6$LC=4.18E-6 6$MC=6.62E-7 9
86BRS G NC=6.22E-8 9$IPC=0.000920 13
86BR2 G %IG=15.5 11
86BR cG $E|g=2441.1 {I3}, I|g=100; I|g(per 100 decays)=43.7 (1980Ze04),
86BR2cG uncertainty is not listed. 2016Ur04 pointed out that absolute intensity
86BR3cG of the 2442.5|g in their study is three times less intense as compared
86BR4cG to that in 1980Ze04
86BR cG $E|g=2443.0 {I10}, I|g=100.0 (1977Pf01)
86BR cG $E|g=2443.3 {I10}, I|g=100.0 {I10} (1975Hu02)
86BR G 2447.1 1 5.2 5 [E1] 9.68E-414
86BRS G KC=4.04E-5 6$LC=4.17E-6 6$MC=6.60E-7 9
86BRS G NC=6.21E-8 9$IPC=0.000923 13
86BR2 G %IG=0.81 9
86BR L 2551.10 7 (0-,1)
86BR cL J$1-,2 (2016Ur04)
86BR B 0.64 10 6.19 9
86BRS B EAV=1071.5 19
86BR cB IB$0.7 {I2} in 2016Ur04
86BR G 929.3 2 0.1 1 C
86BR2 G %IG=0.016 16
86BR cG E$from decay-scheme Fig. 3 of 2016Ur04. Value of 923.3 in authors'
86BR2cG Table II is a misprint, as confirmed by W. Urban Feb 02, 2017
86BR G 1741.8 1 2.0 4 C
86BR2 G %IG=0.31 7
86BR G 2115.9 1 2.0 3 C
86BR2 G %IG=0.31 5
86BR L 2665.50 5 1+
86BR cL J$(1+) (2016Ur04)
86BR B 8.4 6 4.99 4
86BR cB IB$8.3 {I4} in 2016Ur04
86BRS B EAV=1017.8 19
86BR G 1119.8 1 1.3 3 C
86BR2 G %IG=0.20 5
86BR G 1618.6 1 0.9 3 C
86BR2 G %IG=0.14 5
86BR cG E$level-energy difference=1618.2
86BRF G FL=1047.261
86BR G 1730.2 1 2.0 5 C
86BR2 G %IG=0.31 8
86BR G 1879.8 1 1.1 3 C
86BR2 G %IG=0.17 5
86BR G 2095.6 1 9.0 4 [E1] 7.52E-411 C
86BRS G KC=5.06E-5 7$LC=5.22E-6 7$MC=8.28E-7 12
86BRS G NC=7.78E-8 11$IPC=0.000695 10
86BR2 G %IG=1.40 11
86BR G 2661.0 1 40.1 16 [E1] 1.09E-3 2
86BRS G KC=3.59E-5 5$LC=3.70E-6 5$MC=5.87E-7 8
86BRS G NC=5.51E-8 8$IPC=0.001052 15
86BR2 G %IG=6.2 5
86BR cG $E|g=2660.0 {I3}, I|g=50.2 (1980Ze04)
86BR cG $E|g=2661.0 {I10}, I|g=42.0 (1977Pf01)
86BR cG $E|g=2661.9 {I6}, I|g=49.2 {I50} (1975Hu02)
86BR L 2796.77 6 (1)
86BR cL J$1-,2 (2016Ur04)
86BR B 0.74 9 5.95 7
86BRS B EAV=956.3 19
86BR cB IB$0.9 {I2} in 2016Ur04
86BR G 1174.5 2 0.2 1 C
86BR2 G %IG=0.031 16
86BR G 1467.3 2 0.7 2 C
86BR2 G %IG=0.109 32
86BR G 2011.2 2 0.2 1 C
86BR2 G %IG=0.031 16
86BR G 2226.9 1 1.2 2 C
86BR2 G %IG=0.186 33
86BR G 2362.0 2 0.5 2 C
86BR2 G %IG=0.078 32
86BR G 2589.7 1 2.0 3 C
86BR2 G %IG=0.31 5
86BR L 3225.41 6 (1+)
86BR B 0.95 11 5.47 7
86BR cB IB$0.9 {I1} in 2016Ur04
86BRS B EAV=757.7 18
86BR G 2178.1 1 1.1 3 C
86BR2 G %IG=0.17 5
86BR G 2290.2 1 1.0 3 C
86BR2 G %IG=0.16 5
86BR G 2439.8 1 0.8 2 C
86BR2 G %IG=0.124 32
86BR G 2790.3 1 3.2 3 C
86BR2 G %IG=0.50 6
86BR L 3365.28 7 (1+)
86BR B 0.93 11 5.35 7
86BR cB IB$0.9 {I1} in 2016Ur04
86BRS B EAV=693.8 18
86BR G 1876.2 2 1.6 3 C
86BR2 G %IG=0.25 5
86BR G 2430.6 3 0.5 2 C
86BR2 G %IG=0.078 32
86BR G 2556.7 2 0.5 2 C
86BR2 G %IG=0.078 32
86BR cG E$level-energy difference=2556.1
86BRF G FL=809.185
86BR G 2579.3 2 0.6 2 C
86BR2 G %IG=0.093 32
86BR G 3158.2 1 1.8 3 C
86BR2 G %IG=0.28 5
86BR G 3365.1 2 1.0 3
86BR2 G %IG=0.16 5