86KR 86BR B- DECAY (55.1 S) 2016UR04,2017RI08 25NDS 202507
86KR H TYP=FUL$AUT=A. Negret and B. Singh$CIT=NDS 203, 283 (2025)$
86KR2 H CUT=20-Jan-2025$
86KR c 2016Ur04: {+86}Br obtained from the decay of {+86}Se decay, which was
86KR2c produced in the fission of {+235}U induced by thermal neutrons from
86KR3c PF1B-ILL-Grenoble facility, and separated using Lohengrin
86KR4c fission-fragment separator. The cumulative yield for {+86}Se
86KR5c was 1.2%. Measured E|g, I|g, |g|g-coin, |g|g(|q) for 0|', 45|' and
86KR6c 90|', |g|g(linear polarization) using an array of Ge detectors at
86KR7c ILL-Grenoble. For |g|g(|q) data, eight EXOGAM Clover detectors
86KR8c of EXILL array were used. Deduced levels, J|p, mixing ratios.
86KR9c Comparison with large-scale shell-model calculations. Communications
86KRAc with W. Urban (first author of 2016Ur04) between May 04-08, 2023 have
86KRBc been considered in this dataset.
86KR c 2017Ri08: {+87}Br produced in U(p,F) reaction, followed by mass
86KR2c separation using the IGISOL and JYFLTRAP Penning trap at the University
86KR2c of Jyvaskyla accelerator facility. Measured E|g, I|g using the
86KR4c Valencia-Surrey Total Absorption Spectrometer consisting of a
86KR5c cylindrical 12-fold segmented BaF{-2} detector, and |b|g-coin with a
86KR6c 0.5-mm-thick Si detector. Deduced |b feeding distributions using TAGS
86KR7c analysis, and using a branching ratio matrix method so as to reproduce
86KR8c |g-ray intensities profiles in high-resolution experiments.
86KR9c Deduced accumulated Gamow-Teller transition strengths, and compared
86KRAc with QRPA calculations.
86KR c Previous studies of {+86}Br decay:
86KR c 1978LeZA (Table of Isotopes-1978): the decay scheme is adopted from a
86KR2c private communication in 1977 from S. Prussin (University of
86KR3c California, Berkeley). In comparison to earlier studies by 1975Hu02
86KR4c and 1972Ac01, about 30 additional |g rays and six new levels were
86KR5c reported in this communication, and the precision of E|g and I|g values
86KR5c was significantly better than that in previous studies. Consultation
86KR6c by one of the evaluators (in February 2001) with S. Prussin suggested
86KR7c that their work was not published, and a copy of the private
86KR8c communication submitted to 1978LeZA was no longer available. A copy was
86KR9c not available from LBNL Isotopes Project.
86KR c 1975Hu02: measured E|g, I|g, T{-1/2} of {+86}Br decay using Ge(Li)
86KR2c detector. A total of 21 |g rays were reported from 498.0 to 6768.3 keV,
86KR3c but no decay scheme was proposed
86KR c 1972Ac01: measured E|g, I|g, T{-1/2}. Mass-separated source.
86KR2c A total of 19 |g rays were reported from 499.8 to 6209.5 keV.
86KR3c The decay scheme was proposed with nine excited states and 18 |g rays.
86KR c 1971Er15 (also 1970ErZZ): measured E|g, I|g, T{-1/2} of {+86}Br decay
86KR2c Ge(Li) detector. A total of 19 |g rays from 533.2 to 5522 keV assigned
86KR3c to {+86}Br decay. Another 17 |g rays from 94.4 to 4367 keV assigned to
86KR4c {+86}Br or {+87}Br, but no decay scheme was proposed.
86KR c Others:
86KR c 2018Fi03, 2017Fi06, 2014Fi09: Modular Total Absorption Spectrometer
86KR2c (MTAS) system of 19 hexagonal shaped NaI(Tl) scintillators at
86KR3c HRIBF-ORNL facility used to obtain beta feedings and average energy of
86KR4c emitted |g radiation as 4110 keV in contrast to 3260 keV from the decay
86KR5c scheme from discrete |g-ray spectroscopy. Authors introduced 65 pseudo
86KR6c levels to fit the observed total absorption spectrum, but the detailed
86KR7c results of this study, in terms of individual level bins, and
86KR8c respective |b feedings are not available.
86KR c 1988Le21: measured E|g, I|g, yields
86KR c 1979Al05 (also 1982Al01): |b and |b|g coin
86KR c 1977Ki14: T{-1/2} of {+76}Br decay
86KR c 1975Al11 (also 1973Jo02): total |g absorption spectra
86KR c 1972Nu03, 1972Hi13: T{-1/2} of {+76}Br decay
86KR c 1972KrYX: decay properties and yields
86KR c 1970Lu06: measured E|g, I|g, T{-1/2} of {+86}Br decay. Six |g rays
86KR2c reported from 1365 to 6211 keV. An additional 4.5-s activity was
86KR2c assigned to {+86}Br based on the initial growth of 1564|g. This
86KR3c activity has not been confirmed in any of the later studies,
86KR4c including that of 2016Ur04
86KR c 1966Wi03: |g, |g|g-coin, |b, |b|g-coin using NaI(Tl) detector.
86KR2c 15 |g rays reported from 1.21 to 6.7 MeV. Decay scheme was
86KR3c proposed with seven excited states and ten |g rays.
86KR c 1962St13: identified {+86}Br nuclide from {+86}Kr(n,p),E|?13 MeV,
86KR2c followed by chemical separation. Measured |b and |g radiations using
86KR3c scintillation counters, T{-1/2} of {+86}Br decay at Argonne National
86KR4c Laboratory.
86KR c Theoretical calculations for |b decay of {+86}Br:
86KR c 2024Wa15: calculated shape factors and log{ift} for dominant
86KR2c first-forbidden transitions within the projected shell model.
86KR c 2019Ha13, 2019Ha30: calculated shape factors versus electron kinetic
86KR2c energies of dominant first-forbidden, forbidden non-unique, and allowed
86KR3c |b transitions from the decay of {+86}Br, |b, electron and antineutrino
86KR4c spectra using shell model approach.
86KR c 2017Na01, 2007Na28: calculated half-life, first-forbidden |b-decay
86KR2c Gamow-Teller transitions, log| {Ift}, strength distribution and unique
86KR3c first-forbidden transitions using pn-QRPA.
86KR c 1986Ci02: calculated first forbidden |b-decay log| {Ift} from the decay
86KR2c {+86}Br; discussed role of collective effect associated with
86KR3c spin-isospin dependent mode.
86KR c 1975Ko01: calculated |b strength function using classical quasi-static
86KR2c model.
86KR c The decay scheme is primarily from 2016Ur04, built upon previously
86KR2c known decay schemes from 1978LeZA and 1972Ac01. Some of the levels
86KR3c above 5 MeV are from 1978LeZA
86KR cB $Mean average E|b=1687 keV {I60} (2017Ri08), 1.73 MeV {I3} (2017Fi06),
86KR2cB both from TAGS measurements.
86KR cB IB$Unweighted average of values from methods 'A' and 'B' from TAGS data
86KR2cB in 2017Ri08. Individual methods from the two methods are listed in
86KR3cB comments. Method 'A' in 2017Ri08 is conventional analysis of TAGS
86KR4cB data, while method 'B' is from analysis using a slightly modified
86KR5cB branching-ratio matrix to reproduce the experimental |g intensities
86KR6cB obtained in high-resolution experiments as presented in the 2014
86KR7cB update of A=86 nuclei in the ENSDF database.
86KR cB IB(X)$Intensity balance is consistent with zero feeding
86KR cG $Mean average E|g=3782 keV {116} (2017Ri08), 3.72 MeV {I80} (2017Fi06),
86KR2cG both from TAGS measurements.
86KR cG $A |g-ray with E|g=3064.38 {I19}, I|g=0.38 {I4} in 1978LeZA, placed
86KR2cG tentatively from a 5315 level has been omitted here since this |g is
86KR3cG not confirmed by 2016Ur04.
86KR cG $A |g-ray with E|g=803.3 {I3}, I|g=4.4 {I10} in 1972Ac01, placed from
86KR2cG a 6210 level has been omitted here since this |g is not seen in
86KR3cG compilation in 1978LeZA, and 2016Ur04. 1975Hu02 discuss this |g ray
86KR4cG as a complex line with contribution from several activities.
86KR cG $Following |g rays with E|g (I|g) reported by 1971Er15 only have been
86KR2cG omitted: 533.2 {I5} (8.9), 2998 {I1} (3.6), 3342 (7.3),
86KR3cG 3622 {I2} (6.6), 3762 {I2} (5.8); intensities reported are large
86KR4cG which should have been detected in 1972Ac01, 1975Hu02, results reported
86KR5cG in 1978LeZA, and 2016Ur04. These were probably contributed by
86KR6cG impurities in the spectral data from 1971Er15.
86KR cG $The |g|g-coin data are from 2016Ur04, as per e-mail communication,
86KR2cG May 08, 2023 from U. Urban that all the |g rays to the excited states,
86KR3cG and also some to the ground state were observed in their |g|g-coin data
86KR cG E,RI$From 2016Ur04, unless otherwise stated. According to an
86KR2cG e-mail reply of May 08, 2023 from W. Urban (first author of 2016Ur04),
86KR3cG their |g-ray data are valid up to about 4 MeV, as per setting of their
86KR4cG data-acquisition (DAQ) system. The |g-ray intensities from 2016Ur04
86KR5cG given as I|g/100 decays have been converted to relative intensities by
86KR6cG the evaluators with respect to 100 for 1564.75|g, as the authors used
86KR7cG |g-normalization factor from the 2014 evaluation of A=86 nuclei.
86KR cG E(n),RI(n)$This |g from 2016Ur04 only
86KR cG E(y),RI(y)$From 1978LeZA. This |g is not reported by 2016Ur04 due
86KR2cG |g-spectrum collected mainly up to 4 MeV.
86KR cG E(x),RI(x)$Unplaced |g from 1978LeZA only
86KR cG E(z),RI(z)$Unplaced |g from 1978LeZA only, with uncertain assignment
86KR2cG to the decay of {+86}Br.
86KR cG M,MR$From the Adopted Levels, based mainly on the |g|g(|q) and
86KR2cG |g|g(lin pol) measurements for |g rays from low-spin (J|<4) levels
86KR3cG by 2016Ur04
86KR cG M(a)$From |g|g(|q) and |g|g(lin pol) data in 2016Ur04
86KR cG M(b)$From |g|g(|q) data in 2016Ur04, and |DJ|p
86KR cL E$Deduced by evaluators by least-squares fit to E|g data. Reduced
86KR2cL |h{+2}=1.44 is lower than the reduced |h{+2} at 95% confidence level.
86KR3cL Statement by 2016Ur04 that the 6089.1-, 6160.5-, 6211.8-, 6720.5-, and
86KR4cL 6768.3-keV levels could not be confirmed is no longer valid according
86KR5cL to e-mail correspondences between May 04-08, 2023 that their |g-ray
86KR6cL spectra were collected mainly up to 4 MeV.
86KR cL E(N)$New level reported in 2016Ur04
86KR cL E(P)$Pseudo-level based on binned TAGS data in 2017Ri08
86KR cL J$From the Adopted Levels. Assignments by 2016Ur04, based on their
86KR2cL |g|g(|q), and |g|g(linear polarization) measurements are discussed.
86KR cL T$From the Adopted Levels for the excited states.
86KR cL E(A),J(A)$The 2917, (2,3); 2926, 1+ and 3010, (2+) are identified by
86KR2cL 2016Ur04 as possible mixed symmetry states in analogy with structure
86KR3cL of such states in {+94}Mo, although, in {+86}Kr, these states can only
86KR4cL be proton excitations due to N=50 closed shell.
86KR DB EAV,LOGFT$FROM BetaShape v2.4 (Jun-2024) 2023MO21.
86BR P 0.0 1- 55.1 S 5 7633 3
86BR cP J,T$From {+86}Br Adopted Levels
86BR cP QP$From 2021Wa16
86KR N 0.606 24 1.0 1.0
86KR cN NR$Summed I|g to the g.s.=82.4 {I26}, with I|b(g.s.)=17.6 {I26}
86KR2cN (2017Ri08), assuming that the low-lying discrete levels act as
86KR3cN collectors of intensities of |g-rays from unobserved discrete levels
86KR4cN to the excited states, and that most of the g.s. transitions have been
86KR5cN observed.
86KR PN 3
86KR G 538.04 17 0.61 5 x
86KR2 G %IG=0.370 34
86KR G 899.81 27 0.42 8 x
86KR2 G %IG=0.26 5
86KR cG $|g not confirmed by 2016Ur04
86KR G 1155.92 17 0.71 8 x
86KR2 G %IG=0.43 5
86KR G 4136.5 3 0.7 3 x
86KR2 G %IG=0.42 18
86KR G 4401.2 3 1.37 14 x
86KR2 G %IG=0.83 9
86KR G 4415.3 15 0.33 7 z
86KR2 G %IG=0.20 4
86KR G 4721.0 3 0.71 7 x
86KR2 G %IG=0.43 5
86KR G 5032.6 6 0.22 5 z
86KR2 G %IG=0.133 31
86KR G 5466.1 7 0.10 3 z
86KR2 G %IG=0.061 18
86KR G 5575.0 4 0.12 3 z
86KR2 G %IG=0.073 19
86KR L 0.0 0+ STABLE
86KR B 17.6 26 7.45 6
86KR cB $I|b=20.23% {I11} (method B), 15.01% {I8} (method A) (2017Ri08, TAGS).
86KR2cB Other: I|b=20% (2018Fi03)
86KR cB $1966Wi03 deduced from Kurie plots a g.s. |b transition of about
86KR2cB the same intensity as I|b to the 1564 level and estimated I|b|?15%.
86KR3cB 1979Al05 confirmed the existence of a g.s. branch, but no intensity
86KR4cB was extracted. TAGS data in 2016Ur04 confirm direct |b feeding of the
86KR5cB ground state of {+86}Kr. Other: I|b=9% {I5} (2016Ur04)
86KRS B EAV=3497.9 14
86KR L 1564.722 31 2+ 0.234 PS 14
86KR B 3.3 5 7.72 7
86KR cB $I|b=2.843% {I18} (method B), 3.754% {I24} (method A) (2017Ri08, TAGS).
86KR2cB Apparent I|b=3.0% {I23} from |g-transition intensity balance.
86KRS B EAV=2742.2 14
86KR G 1564.75 5 100.0 32 E2 3.00E-4 4 aC
86KRS G KC=0.0001685 24$LC=1.776E-5 25$MC=2.87E-6 4
86KRS G NC=2.91E-7 4$IPC=0.0001105 15
86KR2 G %IG=60.6 31
86KR cG $E|g=1564.60 {I7}, I|g=100.0 {I30} (1978LeZA)
86KR cG $E|g=1565.4 {I5}, I|g=100.0 {I90} (1975Hu02)
86KR cG $E|g=1564.52 {I9}, I|g=100 {I10} (1972Ac01)
86KR L 2250.37 5 4+ 3.1 NS 6
86KR cL J$from |g|g(|q) and |g|g(lin pol) (2016Ur04)
86KR B X ?
86KR cB $I|b=0.0% (method B), 0.0% (method A) (2017Ri08, TAGS).
86KR2cB Apparent I|b=0.39% {I29} from |g-transition intensity balance.
86KR G 685.58 5 2.58 32 E2 1.28E-3 2 aC
86KRS G KC=0.001139 16$LC=0.0001237 17$MC=2.001E-5 28
86KRS G NC=2.004E-6 28
86KR2 G %IG=1.56 20
86KR cG $E|g=685.37 {I7}, I|g=1.84 {I5} (1978LeZA)
86KR cG $(685.6|g)(1564.7|g)(|q): A{-2}=+0.098 {I5}, A{-4}=-0.08 {I11}
86KR cG $|d(O/Q)=0 for J(2250)=4
86KR cG $(685.6|g)(1564.7|g)(|q,pol): POL=+0.25 {I15} for 685.6|g, compared to
86KR2cG POL(theory)=+0.10 {I5} for 4 |) 2 |) 0; E2 |) E2 cascade
86KR L 2349.678 32 2+ 182 FS 15
86KR cL J$from |g|g(|q) and |g|g(lin pol) (2016Ur04)
86KR B 0.00012 7 11.89 25 X ?
86KR cB $I|b=0.0000539% {I4} (method B), 0.0001959% {I15} (method A)
86KR2cB (2017Ri08, TAGS); consistent with I|b=-0.4% {I8} from |g-transition
86KR3cB intensity balance.
86KRS B EAV=2363.5 14
86KR G 784.98 5 8.1 5 M1+E2 -0.10 7 7.78E-411 aC
86KRS G KC=0.000692 10$LC=7.34E-5 11$MC=1.189E-5 17
86KRS G NC=1.204E-6 17
86KR2 G %IG=4.9 4
86KR cG $E|g=784.96 {I8}, I|g=5.77 {I15} (1978LeZA)
86KR cG $E|g=785.6 {I7}, I|g=7.5 {I8} (1975Hu02)
86KR cG $E|g=785.14 18, I|g=6.6 {I6} (1972Ac01)
86KR cG $(785|g)(1564.7|g)(|q): A{-2}=+0.318 {I45}, A{-4}=+0.04 {I10}
86KR cG $|d(Q/D)=-0.10 {I7} for J(2350)=2, +0.82 {I23} for J(2350)=3
86KR cG $(785.0|g)(1564.7|g)(|q,pol): POL=+0.6 {I3} for 785.0|g, compared to
86KR2cG POL(theory)=+0.44 {I12} for 2 |) 2 |) 0; M1+E2 |) E2 cascade
86KR G 2349.59 5 13.6 6 E2 aC
86KR2 G %IG=8.2 5
86KR cG $E|g=2349.37 {I12}, I|g=15.7 {I4} (1978LeZA)
86KR cG $E|g=2350.3 {I5}, I|g=14.9 {I15} (1975Hu02)
86KR cG $E|g=2349.47 {I18}, I|g=15.2 {I13} (1972Ac01)
86KR L 2726.4 4 0+
86KR cL $Level taken by 2017Ri08 from (n,n'|g). Energy is from the
86KR2cL Adopted Levels
86KR B 2.3 6 7.46 11
86KR cB $I|b=1.766% {I10} (method B), 2.914% {I17} (method A) (2017Ri08, TAGS)
86KR2 B EAV=2182.0 14
86KR L 2850.98 4 2+
86KR cL J$from |g|g(|q) and |g|g(lin pol) (2016Ur04)
86KR B 1.8 5 7.52 12
86KR cB $I|b=1.310% {I7} (method B), 2.34% {I13} (method A) (2017Ri08, TAGS).
86KR2cB Apparent I|b=0.8% {I7} from |g-transition intensity balance.
86KRS B EAV=2122.0 14
86KR G 501.40 6 3.39 32 (M1+E2) 0.0026 5 bC
86KRS G KC=0.0023 5$LC=0.00026 5$MC=4.1E-5 9
86KRS G NC=4.1E-6 8
86KR2 G %IG=2.05 21
86KR cG $E|g=501.25 {I7}, I|g=2.76 {I25} (1978LeZA)
86KR cG $E|g=498.0 {I6}, I|g=3.2 {I27} (1975Hu02)
86KR cG $E|g=499.8 {I4}, I|g=0.6 {I5} (1972Ac01)
86KR cG $(501.4|g)(2349.6|g)(|q): A{-2}=+0.23 {I11}, A{-4}=+0.13 {I27}
86KR cG $|d(Q/D)=+0.03 {I20} or -2.3 {I+8-15} for J(2851)=2;
86KR2cG +0.5 {I+15-3} or +1.1 {I+10-2} for J(2851)=3
86KR G 1286.25 5 14.7 7 M1+E2 +0.47 5 2.98E-4 4 aC
86KRS G KC=0.0002471 35$LC=2.60E-5 4$MC=4.21E-6 6
86KRS G NC=4.27E-7 6$IPC=1.994E-5 33
86KR2 G %IG=8.9 6
86KR cG $E|g=1286.08 {I9}, I|g=12.40 {I24} (1978LeZA)
86KR cG $E|g=1286.9 {I6}, I|g=11.5 {I12} (1975Hu02)
86KR cG $E|g=1285.83 {I14}, I|g=11.7 {I16} (1972Ac01)
86KR cG $(1286.3|g)(1564.7|g)(|q): A{-2}=-0.092 {I3}, A{-4}=+0.016 {I54}
86KR cG $|d(E2/M1)=+0.47 {I5} for J(2851)=2, -0.03 {I3} for J(2851)=3
86KR cG $(1286.3|g)(1564.7|g)(|q,pol): POL=+0.4 {I2} for 1286.3|g, compared to
86KR2cG POL(theory)=+0.42 {I5} for 2 |) 2 |) 0; M1+E2 |) E2 cascade;
86KR3cG and +0.19 {I15} for 3 |) 2 |) 0; E1+M2 |) E2 cascade
86KR cG $(1286.3|g)(1564.7|g)(|q,pol): POL=-0.48 {I22} for 1564.7|g,
86KR2cG compared to POL(theory)=-0.12 {I3} for J |) 2 |) 0; D+Q |) E2 cascade
86KR L 2917.32 5 (2+,3+) A
86KR cL J$(2,3) in 2016Ur04, with J=2 favored from |g|g(|q)
86KR B 0.15 5 8.57 14 ?
86KR cB $I|b=0.1040% {I6} (method B), 0.2062% {I11} (method A) (2017Ri08,
86KR2cB TAGS). Apparent I|b=0.00% {I31} from |g-transition intensity balance.
86KRS B EAV=2090.1 14
86KR G 666.84 6 1.29 32 [D,E2] 0.0009444 C
86KR2 G %IG=0.78 20
86KR cG $E|g=666.77 {I7}, I|g=1.40 {I5} (1978LeZA)
86KR G 1352.4 2 0.48 16 nC
86KR2 G %IG=0.29 10
86KR cG $(1352.4|g)(1564.7|g)(|q): A{-2}=-0.31 {I13}, A{-4}=-0.54 {I25}
86KR cG $|d(Q/D)=+2.8 {I18} for J(2917)=2
86KR L 2926.313 34 1+ A
86KR cL J$from |g|g(|q) and |g|g(lin pol) (2016Ur04)
86KR B 0.95 37 7.76 17 ?
86KR cB $I|b=0.584% {I3} (method B), 1.323% {I7} (method A) (2017Ri08, TAGS).
86KR2cB Apparent I|b=0.3% {I9} from |g-transition intensity balance.
86KRS B EAV=2085.8 14
86KR G 576.45 8 0.97 16 [M1+E2] 0.0018227 C
86KRS G KC=0.00161 24$LC=0.000175 28$MC=2.8E-5 5
86KRS G NC=2.8E-6 4
86KR2 G %IG=0.59 10
86KR cG E$somewhat poor fit in the decay scheme; level-energy difference=575.63
86KR cG $E|g=576.72 {I8}, I|g=0.79 {I6} (1978LeZA)
86KR G 1361.62 5 18.6 10 M1+E2 +0.06 2 2.80E-4 4 aC
86KRS G KC=0.0002197 31$LC=2.311E-5 32$MC=3.74E-6 5
86KRS G NC=3.79E-7 5$IPC=3.32E-5 5
86KR2 G %IG=11.3 8
86KR cG $E|g=1361.63 {I10}, I|g=16.4 {I4} (1978LeZA)
86KR cG $E|g=1362.3 {I7}, I|g=13.8 14 (1975Hu02)
86KR cG $E|g=1361.66 {I11}, I|g=18.0 {I14} (1972Ac01)
86KR cG $(1361.6|g)(1564.7|g)(|q): A{-2}=-0.319 {I17}, A{-4}=-0.013 {I33}
86KR cG $|d(Q/D)=+0.06 {I2} for J(2926)=1, -0.33 {I3} for J(2926)=3, no
86KR2cG solution for J(2926)=2
86KR cG $(1361.6|g)(1564.7|g)(|q,pol): POL=-0.58 {I15} for 1361.6|g, compared
86KR2cG to POL(theory)=-0.48 {I5} for 1 |) 2 |) 0; M1+E2 |) E2 cascade;
86KR3cG -0.99 {I8} for 3 |) 2 |) 0; M1+E2 |) E2 cascade
86KR cG $(1361.6|g)(1564.7|g)(|q,pol): POL=-0.28 {I12} for 1564.7|g, compared
86KR2cG to POL(theory)=-0.42 {I3} for J |) 2 |) 0; D+Q |) E2 cascade
86KR G 2926.28 5 2.74 32 C
86KR2 G %IG=1.66 21
86KR cG $E|g=2925.93 {I20}, I|g=3.3 {I4} (1978LeZA)
86KR cG $E|g=2927.6 {I10}, I|g=4.1 {I4} (1975Hu02)
86KR cG $E|g=2925.9 {I4}, I|g=3.5 {I6} (1972Ac01)
86KR L 3009.65 6 (2)+ A
86KR cL J$(2+) in 2016Ur04
86KR B 1.9 11 7.43 25
86KR cB $I|b=0.760% {I5} (method B), 2.95% {I18} (method A) (2017Ri08, TAGS).
86KR2cB Apparent I|b=0.6% {I3} from |g-transition intensity balance.
86KRS B EAV=2045.7 14
86KR G 659.97 6 1.33 7 [M1+E2] 0.0012814 C
86KR cG RI$from 1978LeZA. Other: 1.77 {I32} (2016Ur04)
86KR cG $I|g(660)/I|g(3009)=1.8 {I7} (2016Ur04) is in disagreement with
86KR2cG 0.85 {I8} from 1978LeZA, and with 0.75 {I6} from (n,n'|g) (2013Fo13),
86KR3cG while the values from 1978LeZA and 2013Fo13 are in agreement. For
86KR4cG this reason, I|g values for 660|g and 3009|g from the 3009 level are
86KR5cG adopted from 1978LeZA.
86KRS G KC=0.00114 13$LC=0.000123 15$MC=1.98E-5 24
86KRS G NC=2.00E-6 23
86KR2 G %IG=0.81 5
86KR cG $E|g=660.02 {I10} (1978LeZA).
86KR G 3009.50 15 1.57 12
86KR cG RI$from 1978LeZA. Other: 0.97 {I32} (2016Ur04).
86KR cG $See I|g comment for 659.97|g for reason of adopting the value
86KR2cG from 1978LeZA.
86KR2 G %IG=0.95 8
86KR cG $E|g=3009.0 {I3} (1978LeZA).
86KR L 3099.06 4 3- 51 FS 23
86KR cL J$J=3 supported by |g|g(|q) (2016Ur04)
86KR B X ?
86KR cB $I|b=0.0% (method B), 0.0% (method A) (2017Ri08, TAGS).
86KR2cB I|b=-0.5% {I8} from |g-transition intensity balance.
86KR G 749.3 1 0.32 16 [E1] 3.84E-4 5 C
86KRS G KC=0.000341 5$LC=3.60E-5 5$MC=5.81E-6 8
86KRS G NC=5.87E-7 8
86KR2 G %IG=0.19 10
86KR cG $E|g=749.5 {I7}, I|g=1.1 {I2} (1972Ac01, placed from 3099 level)
86KR G 1534.39 5 14.5 7 E1(+M2) +0.01 2 3.75E-4 5 aC
86KRS G KC=8.90E-5 13$LC=9.29E-6 13$MC=1.502E-6 21
86KRS G NC=1.521E-7 22$IPC=0.000275 4
86KR2 G %IG=8.8 6
86KR cG $E|g=1534.24 {I8}, I|g=12.5 {I3} (1978LeZA)
86KR cG $E|g=1535.1 {I6}, I|g=12.8 {I13} (1975Hu02)
86KR cG $E|g=1534.6 {I3}, I|g=18.6 {I14} (1972Ac01)
86KR cG $(1534.4|g)(1564.7|g)(|q): A{-2}=-0.066 {I19}, A{-4}=+0.042 {I41}
86KR cG $|d(Q/D)=+0.43 {I3} for J(3099)=2; +0.01 {I2} for J(3099)=3
86KR cG $(1534.3|g)(1564.7|g)(|q,pol): POL=+0.15 {I10} for 1534.3|g, compared
86KR2cG to POL(theory)=+0.21 {I8} for 2 |) 2 |) 0; M1+E2 |) E2 cascade;
86KR3cG and +0.06 {I4} for 3 |) 2 |) 0; E1+M2 |) E2 cascade
86KR cG $(1534.3|g)(1564.7|g)(|q,pol): POL=-0.13 {I10} for 1564.7|g, compared
86KR2cG to POL(theory)=-0.07 {I3} for J |) 2 |) 0; D+Q |) E2 cascade
86KR L 3335.11 15 (2+) N
86KR B 2.5 10 7.17 17
86KR cB $I|b=1.522% {I9} (method B), 3.58% {I20} (method A) (2017Ri08, TAGS;
86KR2cB for a 3328.2 level from (n,n'|g), but could be for 3335.1 level also).
86KR3cB Apparent I|b=0.89% {I23} from |g-transition intensity balance.
86KRS B EAV=1889.2 14
86KR G 1084.9 2 0.65 16 nC
86KR2 G %IG=0.39 10
86KR G 1770.2 2 0.81 33 C
86KR2 G %IG=0.49 20
86KR cG $E|g=1770.3 {I3}, I|g=0.60 {I7} (1978LeZA)
86KR cG $E|g=1771.0 {I7}, I|g=1.3 {I5} (1975Hu02)
86KR cG $E|g=1768.5 {I6}, I|g=2.1 {I4} (1972Ac01)
86KR L 3541.6 0+
86KR cL $2017Ri08 adopted level from (n,n'|g)
86KR B 0.14 4 8.3
86KR cB $I|b=0.0967% {I6} (method B), 0.1814% {I10} (method A) (2017Ri08, TAGS)
86KR2 B EAV=1790.1
86KR L 3580 20 P
86KR B 0.21 14 8.13 29
86KR cB $I|b=0.0707% {I4} (method B), 0.3582% {I24} (method A) (2017Ri08, TAGS)
86KRS B EAV=1772 10
86KR L 3620 20 P
86KR B 0.16 11 8.23 30
86KR cB $I|b=0.0535% {I3} (method B), 0.2685% {I17} (method A) (2017Ri08, TAGS)
86KRS B EAV=1753 10
86KR L 3660 20 P
86KR B 0.18 12 8.16 29
86KR cB $I|b=0.0547% {I3} (method B), 0.2953% {I19} (method A) (2017Ri08, TAGS)
86KRS B EAV=1733 10
86KR L 3700 20 P
86KR B 0.21 15 8.07 31
86KR cB $I|b=0.0540% {I3} (method B), 0.3579% {I23} (method A) (2017Ri08, TAGS)
86KRS B EAV=1714 10
86KR L 3740 20 P
86KR B 0.22 17 8.03 34
86KR cB $I|b=0.04127% {I24} (method B), 0.3910% {I25} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=1695 10
86KR L 3780 20 P
86KR B 0.19 17 8.08 39
86KR cB $I|b=0.02017 {I12} (method B), 0.3573 {I22} (method A) (2017Ri08,
86KR2cB TAGS); part of this feeding could be associated with that for 3783.3
86KR3cB level
86KRS B EAV=1676 10
86KR L 3783.30 17 (1+,2+) N
86KR cL J$1+,2+ in 2016Ur04
86KR B
86KR cB $Apparent I|b=0.69% {I14} from |g-transition intensity balance.
86KR2cB The |b feeding of 0.19% {I17} for 3780 {I20} energy bin in 2017Ri08
86KR3cB could be associated with that for the 3783.3 level
86KR G 2218.8 3 0.48 16 nC
86KR2 G %IG=0.29 10
86KR G 3783.1 2 0.65 16
86KR2 G %IG=0.39 10
86KR cG $E|g=3783.1 {I6}, I|g=1.5 {I3} (1978LeZA, unplaced)
86KR L 3820 20 P
86KR B 0.12 11 8.26 40
86KR cB $I|b=0.00581% {I3} (method B), 0.2224% {I14} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=1657 10
86KR L 3860 20 P
86KR B 0.05 5 8.2 GE
86KR cB $I|b=0.001300% {I7} (method B), 0.0984% {I6} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=1638 10
86KR L 3900 20 P
86KR B 0.028 28 8.4 GE
86KR cB $I|b=0.000535 {I3} (method B), 0.0562 {I4} (method A) (2017Ri08, TAGS)
86KRS B EAV=1618 10
86KR L 3940 20 P
86KR B 0.011 10 9.23 39
86KR cB $I|b=0.0001561% {I9} (method B), 0.02120% {I13} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1599 10
86KR L 3980 20 P
86KR B 0.006 6 9.1 GE
86KR cB $I|b=0.0001082 {I6} (method B), 0.01180 {I7} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1580 10
86KR L 4020 20 P
86KR B 0.005 5 9.1 GE
86KR cB $I|b=0.0001367% {I7} (method B), 0.01017% {I6} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1561 10
86KR L 4039.39 9 (3-) N
86KR B X ?
86KR cB $I|b=-0.01% {I30} from |g-transition intensity balance.
86KR G 1689.7 2 0.81 33 nC
86KR2 G %IG=0.49 20
86KR G 4039.3 2 0.32 16 [E3] n
86KR2 G %IG=0.19 10
86KR cG RI$intensity reported in 2016Ur04 is probably lower than expected due
86KR2cG to the |g-energy spectrum validity up to 4 MeV. This |g was not
86KR3cG reported by 1978LeZA, 1975Hu02 and 1972Ac01.
86KR L 4060 20 P
86KR B 0.008 8 8.9 GE
86KR cB $I|b=0.0004790% {I25} (method B), 0.01590% {I9} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1542 10
86KR L 4100 20 P
86KR B 0.020 17 8.89 37
86KR cB $I|b=0.002359% {I12} (method B), 0.03707% {I21} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1523 10
86KR L 4140 20 P
86KR B 0.08 6 8.27 33
86KR cB $I|b=0.01973% {I10} (method B), 0.1336% {I7} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1504 10
86KR L 4180 20 P
86KR B 0.39 20 7.56 22
86KR cB $I|b=0.1912% {I9} (method B), 0.5951% {I30} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1485 10
86KR L 4220 20 P
86KR B 1.6 4 6.92 11
86KR cB $I|b=1.188% {I5} (method B), 1.946% {I9} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1466 10
86KR L 4260 20 P
86KR B 4.61 26 6.439 27
86KR cB $I|b=4.343% {I19} (method B), 4.871% {I22} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1447 10
86KR L 4300 20 P
86KR B 10.4 9 6.063 39
86KR cB $I|b=11.34% {I5} (method B), 9.475% {I42} (method A)
86KR2cB (2017Ri08, TAGS). This |b feeding is likely associated with the large
86KR3cB I|b feeding from |g-transition intensity balance for the 4316.2 level
86KRS B EAV=1427 10
86KR L 4316.183 34 2-
86KR cL $Proposed as member of configuration=|nf{-5/2}{+-1}~#|pg{-9/2}.
86KR2cL Strong population in the decay of 1- g.s. of {+86}Br suggests an
86KR3cL admixture of |ng{-7/2}|)|pg{-9/2} Gamow-Teller transition
86KR B
86KR cB $Apparent I|b=56.7% {I26} from |g-transition intensity balance.
86KR2cB I|b=10.4% {I9} for the 4300 {I20} energy bin, and 10.0% {I10} for
86KR3cB the 4340 {I20} energy bin represents a maximum of |?20% |b feeding
86KR4cB to this level in contrast to |?57% from the |g-transition intensity
86KR5cB balance. In contrast, in another TAGS experiment, Fig. 3 in 2018Fi03,
86KR6cB almost an exact matching is shown between the peaks showing |b feeding
86KR7cB from TAGS data and that from the ENSDF data in the 2014 update of A=86
86KR8cB nuclei.
86KR G 276.8 1 1.13 32 [M1+E2] 0.016 7 nC
86KRS G KC=0.014 6$LC=0.0016 7$MC=2.6E-4 12
86KRS G NC=2.5E-5 11
86KR2 G %IG=0.69 20
86KR G 1217.17 5 14.5 8 (M1+E2) +0.75 30 bC
86KR2 G %IG=8.8 6
86KR cG $E|g=1217.02 {I9}, I|g=10.66 {I23} (1978LeZA)
86KR cG $E|g=1218.3 {I13}, I|g=8.2 {I8} (1975Hu02)
86KR cG $E|g=1217.23 {I13}, I|g=12.0 {I13} (1972Ac01)
86KR cG $(1217.2|g)(1534.3|g)(|q): A{-2}=+0.362 {I23}, A{-4}=+0.051 {I56}
86KR cG $|d(Q/D)=+0.75 {I30} for J(4316)=2 and J(3099)=3; no solution for
86KR2cG J(4316)=2 and J(3099)=1; in both cases |d(Q/D)=+0.01 assumed for
86KR3cG 1534.3|g
86KR G 1306.5 1 1.13 32 C
86KR2 G %IG=0.69 20
86KR cG $E|g=1306.57 {I25}, I|g=0.62 {I7} (1978LeZA)
86KR G 1389.84 5 19.5 10 (E1(+M2)) +0.12 20 bC
86KR2 G %IG=11.8 8
86KR cG $E|g=1389.73 {I9}, I|g=16.4 {I3} (1978LeZA)
86KR cG $E|g=1390.4 {I6}, I|g=14.9 {I15} (1975Hu02)
86KR cG $E|g=1389.76 {I13}, I|g=16.1 {I14} (1972Ac01)
86KR cG $(1389.8|g)(1361.6|g)(|q): A{-2}=-0.01 {I2}, A{-4}=-0.03 {I4}
86KR cG $|d(Q/D)=+0.12 {I20} or +2.3 {I10} for |d(1361.6)=+0.06, J(4316)=2, and
86KR2cG J(2926)=1; -0.18 {I3} for |d(1361.6)=-0.33, J(4316)=2, and J(2926)=3
86KR cG $(1389.8|g)(2926.3|g)(|q): A{-2}=-0.004 {I65}, A{-4}=+0.01 {I14}
86KR cG $Any value for |d(Q/D) of 2926.3|g is possible assuming
86KR2cG |d(1389.8)=+0.12 or +2.3, and for J(4316)=2 and J(2926)=1
86KR G 1398.77 5 1.29 32 C
86KR2 G %IG=0.78 20
86KR cG $E|g=1398.48 {I22}, I|g=0.55 {I10} (1978LeZA)
86KR G 1465.25 5 14.8 8 (E1(+M2)) -0.03 4 bC
86KR2 G %IG=9.0 6
86KR cG $E|g=1465.09 {I10}, I|g=12.0 {I3} (1978LeZA)
86KR cG $E|g=1466.3 {I6}, I|g=8.9 {I9} (1975Hu02)
86KR cG $E|g=1464.9 {I3}, I|g=8.6 {I8} (1972Ac01)
86KR cG $(1465.3|g)(1286.3|g)(|q): A{-2}=+0.363 {I31}, A{-4}=-0.039 {I75}
86KR cG $|d(Q/D)=-0.03 {I4} or -2.1 {I2} for |d(1286.3)=+0.47, J(4316)=2, and
86KR2cG J(2851)=2; +0.36 {I8} or +1.5 {I2} for |d(1286.3)=-0.03, J(4316)=2, and
86KR3cG J(2851)=3
86KR G 1966.50 5 10.0 7 E1(+M2) +0.04 4 6.70E-4 9 aC
86KRS G KC=6.04E-5 11$LC=6.29E-6 11$MC=1.016E-6 18
86KRS G NC=1.030E-7 19$IPC=0.000602 9
86KR2 G %IG=6.1 5
86KR cG $E|g=1966.27 {I11}, I|g=10.6 {I3} (1978LeZA)
86KR cG $E|g=1967.4 {I6}, I|g=11.4 {I11} (1975Hu02)
86KR cG $E|g=1966.1 {I3}, I|g=11.6 {I13} (1972Ac01)
86KR cG $(1966.5|g)(2349.6|g)(|q): A{-2}=+0.224 {I31}, A{-4}=-0.021 {I75}
86KR cG $|d(Q/D)=+0.04 {I4} for J(4316)=2, +0.53 {I15} or +1.3 {I3} for
86KR2cG J(4316)=3
86KR cG $(1966.5|g)(2349.6|g)(|q,pol): POL=-0.5 {I3} for 1966.5|g, compared
86KR2cG to POL(theory)=-0.42 {I8} for 2 |) 2 |) 0; E1+M2 |) E2 cascade
86KR cG $(1966.5|g)(2349.6|g)(|q,pol): POL=+0.3 {I2} for 2349.6|g, compared
86KR2cG to POL(theory)=+0.36 {I6} for J |) 2 |) 0; D+Q |) E2 cascade
86KR G 2751.38 5 30.3 11 E1(+M2) +0.01 2 1.14E-3 2 aC
86KRS G KC=3.70E-5 5$LC=3.84E-6 5$MC=6.21E-7 9
86KRS G NC=6.30E-8 9$IPC=0.001099 15
86KR2 G %IG=18.4 10
86KR cG $E|g=2751.06 {I15}, I|g=30.8 {I9} (1978LeZA)
86KR cG $E|g=2752.0 {I6}, I|g=35.4 {I32} (1975Hu02)
86KR cG $E|g=2751.15 {I26}, I|g=31.8 {I35} (1972Ac01)
86KR cG $(2751.4|g)(1564.7|g)(|q): A{-2}=+0.254 {I13}, A{-4}=+0.003 {I30}
86KR cG $|d(Q/D)=+0.01 {I2} for J(4316)=2, +0.61 {I8} for J(4316)=3; no
86KR2cG solution for |d(Q/D) for J(4316)=1
86KR cG $(2751.4|g)(1564.7|g)(|q,pol): POL=-0.42 {I8} for 2751.4|g, compared
86KR2cG to POL(theory)=-0.45 {I5} for 2 |) 2 |) 0; E1+M2 |) E2 cascade
86KR cG $(2751.4|g)(1564.7|g)(|q,pol): POL=+0.33 {I8} for 1564.7|g, compared
86KR2cG to POL(theory)=+0.44 {I3} for J |) 2 |) 0; D+Q |) E2 cascade
86KR G 4316.1 1 0.81 33 [M2]
86KR2 G %IG=0.49 20
86KR cG RI$intensity reported in 2016Ur04 could be lower than expected due
86KR2cG to the |g-energy spectrum validity up to 4 MeV.
86KR cG $E|g=4316.5 {I6}, I|g=0.19 {I10} (1978LeZA)
86KR L 4340 20 P
86KR B 10.0 10 6.057 45
86KR cB $I|b=11.03% {I5} (method B), 9.023% {I40} (method A)
86KR2cB (2017Ri08, TAGS). Some of this |b feeding is likely associated with the
86KR3cB large feeding from |g-transition intensity balance for the 4316.2 level
86KRS B EAV=1408 10
86KR L 4359.7 4 (0+,1,2) N
86KR cL J$(3) in 2016Ur04
86KR B
86KR cB $Apparent I|b=0.78% {I20} from |g-transition intensity balance.
86KR2cB Part of the |b feeding from the TAGS spectra for the 4340 {I20} and
86KR3cB 4380 {I20} could correspond to the apparent feeding for the 4360 level.
86KR G 2010.0 4 1.29 32 nC
86KR2 G %IG=0.78 20
86KR L 4380 20 P
86KR B 5.59 28 6.287 25
86KR cB $I|b=5.865% {I25} (method B), 5.313% {I24} (method A) (2017Ri08, TAGS)
86KRS B EAV=1389 10
86KR L 4420 20 P
86KR B 1.14 9 6.954 36
86KR cB $I|b=1.053% {I5} (method B), 1.235% {I6} (method A) (2017Ri08, TAGS)
86KRS B EAV=1370 10
86KR L 4460 20 P
86KR B 0.22 6 7.65 12
86KR cB $I|b=0.1589% {I7} (method B), 0.2821% {I14} (method A) (2017Ri08, TAGS)
86KRS B EAV=1351 10
86KR L 4500 20 P
86KR B 0.044 21 8.32 21
86KR cB $I|b=0.02246% {I11} (method B), 0.06544% {I35} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1332 10
86KR L 4540 20 P
86KR B 0.0049 32 9.25 28
86KR cB $I|b=0.001644% {I8} (method B), 0.008139% {I46} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1313 9
86KR L 4580 20 P
86KR B 0.0014 11 9.77 34
86KR cB $I|b=0.0002817% {I15} (method B), 0.002428% {I15} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1294 9
86KR L 4620 20 P
86KR B 0.0008 7 9.99 38
86KR cB $I|b=0.00008561% {I46} (method B), 0.001495% {I10} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1275 9
86KR L 4660 20 P
86KR B 0.0009 8 9.91 39
86KR cB $I|b=0.00005198% {I29} (method B), 0.001739% {I11} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1256 9
86KR L 4700 20 P
86KR B 0.0019 18 9.56 41
86KR cB $I|b=0.00006709% {I38} (method B), 0.003829% {I26} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1238 9
86KR L 4717.71 30 (0+,1,2) N
86KR cL J$(2+) in 2016Ur04
86KR B
86KR cB $Apparent I|b=0.29% {I10} from |g-transition intensity balance.
86KR2cB No comparable |b feeding from the TAGS spectra could correspond to the
86KR3cB apparent feeding for the 4717 level.
86KR G 2368.0 3 0.48 16 nC
86KR2 G %IG=0.29 10
86KR L 4740 20 P
86KR B 0.0044 43 9.17 42
86KR cB $I|b=0.0001258% {I7} (method B), 0.008583% {I58} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1219 9
86KR L 4780 20 P
86KR B 0.018 17 8.53 41
86KR cB $I|b=0.0004551% {I27} (method B), 0.03517% {I24} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1200 9
86KR L 4820 20 P
86KR B 0.044 43 8.12 42
86KR cB $I|b=0.001250% {I7} (method B), 0.08646% {I59} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1181 9
86KR L 4860 20 P
86KR B 0.078 75 7.4 GE
86KR cB $I|b=0.002794% {I16} (method B), 0.1531% {I10} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1162 9
86KR L 4900 20 P
86KR B 0.10 9 7.71 39
86KR cB $I|b=0.005359% {I32} (method B), 0.1880% {I13} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1143 9
86KR L 4940 20 P
86KR B 0.08 7 7.78 38
86KR cB $I|b=0.007061% {I42} (method B), 0.1554% {I11} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1124 9
86KR L 4980 20 P
86KR B 0.054 47 7.92 38
86KR cB $I|b=0.007362% {I43} (method B), 0.1006% {I7} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1105 9
86KR L 5020 20 P
86KR B 0.032 25 8.12 34
86KR cB $I|b=0.006600% {I38} (method B), 0.05757% {I39} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1086 9
86KR L 5060 20 P
86KR B 0.021 15 8.28 31
86KR cB $I|b=0.006420% {I37} (method B), 0.03654% {I24} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1068 9
86KR L 5100 20 P
86KR B 0.020 12 8.27 26
86KR cB $I|b=0.007892% {I45} (method B), 0.03178% {I21} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1049 9
86KR L 5140 20 P
86KR B 0.030 15 8.06 22
86KR cB $I|b=0.01456% {I8} (method B), 0.04501% {I29} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=1030 9
86KR L 5180 20 P
86KR B 0.059 24 7.74 18
86KR cB $I|b=0.03595% {I20} (method B), 0.08293% {I51} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=1011 9
86KR L 5220 20 P
86KR B 0.17 5 7.25 13
86KR cB $I|b=0.1201% {I6} (method B), 0.2105% {I13} (method A) (2017Ri08, TAGS)
86KRS B EAV=993 9
86KR L 5260 20 P
86KR B 0.54 9 6.72 7
86KR cB $I|b=0.4455% {I23} (method B), 0.6307% {I36} (method A) (2017Ri08,
86KR2cB TAGS).
86KRS B EAV=974 9
86KR L 5269.47 9 (1-,2) N
86KR cL J$(2-) in 2016Ur04
86KR B
86KR cB $Apparent I|b=1.47% {I25} from |g-transition intensity balance.
86KR2cB The I|b=0.54% for the 5260 {I20} energy bin could correspond to the
86KR3cB feeding for the 5269 level
86KR G 2170.1 2 0.65 33 nC
86KR2 G %IG=0.39 20
86KR G 2418.6 1 1.45 16 C
86KR2 G %IG=0.88 10
86KR cG $E|g=2418.24 {I23}, I|g=1.3 {I5} (1978LeZA, placed from a 5517 level)
86KR G 3704.4 2 0.32 16 nC
86KR2 G %IG=0.19 10
86KR L 5300 20 P
86KR B 1.26 8 6.319 32
86KR cB $I|b=1.184% {I6} (method B), 1.327% {I7} (method A) (2017Ri08, TAGS)
86KRS B EAV=955 9
86KR L 5323.40 10 (2-) N
86KR B
86KR cB $Apparent I|b=1.08% {I14} from |g-transition intensity balance.
86KR2cB The I|b=2.37% for the 5340 {I20} energy bin could correspond to the
86KR3cB feeding for the 5323 level
86KR G 2973.2 2 0.81 16 C
86KR2 G %IG=0.49 10
86KR cG E$somewhat poor fit in the decay scheme; level-energy
86KR2cG difference=2973.66
86KR cG $E|g=2973.2 {I4}, I|g=0.78 {I10} (1978LeZA, unplaced)
86KR G 3758.7 1 0.97 16 D(+Q) -0.2 3 bC
86KR2 G %IG=0.59 10
86KR cG $E|g=3758.8 {I3}, I|g=1.28 {I15} (1978LeZA, placed from a 6768 level)
86KR cG $(3758.7|g)(1564.7|g)(|q): A{-2}=+0.38 {I14}, A{-4}=+0.12 {I33}
86KR cG $|d(Q/D)=-0.2 {I3} for J(5323)=2, +0.82 {I45} for J(5323)=3
86KR L 5340 20 P
86KR B 2.37 4 6.013 18
86KR cB $I|b=2.407% {I12} (method B), 2.333% {I13} (method A) (2017Ri08, TAGS)
86KRS B EAV=937 9
86KR L 5380 20 P
86KR B 3.62 22 5.797 31
86KR cB $I|b=3.841% {I19} (method B), 3.399% {I18} (method A) (2017Ri08, TAGS)
86KRS B EAV=918 9
86KR L 5397.72 10 (1-,2)
86KR cL J$(2-) in 2016Ur04
86KR B
86KR cB $Apparent I|b=1.6% {I4} from |g-transition intensity balance.
86KR2cB Part of the I|b=3.62% for the 5380 {I20} energy bin could correspond
86KR3cB to the feeding for the 5398 level
86KR G 2298.8 2 0.16 16 nC
86KR2 G %IG=0.10 10
86KR G 2388.0 2 0.81 33 C
86KR2 G %IG=0.49 20
86KR cG $E|g=2387.79 {I18}, I|g=1.12 {I12} (1978LeZA, placed from a 5314 level)
86KR G 2471.3 2 0.65 16 C
86KR2 G %IG=0.39 10
86KR cG $E|g=2471.3 {I3}, I|g=0.72 {I10} (1978LeZA, unplaced)
86KR G 2480.3 2 0.48 16 C
86KR2 G %IG=0.29 10
86KR cG $E|g=2480.4 {I5}, I|g=0.64 {I10} (1978LeZA, placed from a 5406 level)
86KR G 3832.9 2 0.48 16 nC
86KR2 G %IG=0.29 10
86KR L 5405.98 25 (1,2)
86KR cL $Level from 1978LeZA and 1972Ac01
86KR B
86KR cB $Apparent I|b=5.5% {I4} from |g-transition intensity balance.
86KR2cB The I|b=3.8% for the 5420 {I20} energy bin could correspond to the
86KR3cB feeding for the 5406 level
86KR G 5405.80 25 9.0 5 y
86KR2 G %IG=5.5 4
86KR cG $E|g=5405.8 {I13}, I|g=6.8 {I7} (1975Hu02)
86KR cG $E|g=5406.6 {I5}, I|g=6.2 {I15} (1972Ac01)
86KR L 5420 20 P
86KR B 3.8 4 5.743 49
86KR cB $I|b=4.200% {I20} (method B), 3.473% {I18} (method A) (2017Ri08, TAGS)
86KRS B EAV=899 9
86KR L 5460 20 P
86KR B 3.09 25 5.800 39
86KR cB $I|b=3.335% {I16} (method B), 2.845% {I15} (method A) (2017Ri08, TAGS)
86KRS B EAV=881 9
86KR L 5500 20 P
86KR B 2.25 19 5.905 41
86KR cB $I|b=2.433% {I12} (method B), 2.057% {I11} (method A) (2017Ri08, TAGS)
86KRS B EAV=862 9
86KR L 5517.80 16 1-
86KR cL J$(2) in 2016Ur04
86KR B
86KR cB $Apparent I|b=3.71% {I25} from |g-transition intensity balance.
86KR2cB The I|b=2.25% for the 5500 {I20} energy bin and I|b=1.46% for the 5540
86KR3cB {I20} energy bin could correspond to the feeding for the 5517 level.
86KR G 3953.0 2 0.32 16 nC
86KR2 G %IG=0.19 10
86KR G 5517.58 25 5.8 3 E1
86KR cG M$from the Adopted dataset
86KR2 G %IG=3.52 23
86KR cG E,RI$values preferred from 1978LeZA, due to |g-spectrum validity up
86KR2cG to 4 MeV in 2016Ur04
86KR cG $E|g=5517.6 {I3}, I|g=0.16 {I16} (2016Ur04)
86KR cG $E|g=5517.8 {I13}, I|g=4.1 {I4} (1975Hu02)
86KR cG $E|g=5519.0 {I9}, I|g=4.4 {I10} (1972Ac01)
86KR L 5540 20 P
86KR B 1.46 10 6.058 35
86KR cB $I|b=1.563% {I8} (method B), 1.359% {I8} (method A) (2017Ri08, TAGS)
86KRS B EAV=844 9
86KR L 5580 20 P
86KR B 1.04 6 6.171 31
86KR cB $I|b=1.095% {I6} (method B), 0.9800% {I55} (method A) (2017Ri08, TAGS)
86KRS B EAV=825 9
86KR L 5590.64 20 (0+,1,2) N
86KR cL J$(2) in 2016Ur04
86KR B
86KR cB $Apparent I|b=0.29% {I10} from |g-transition intensity balance.
86KR2cB Part of the I|b=1.04% for the 5580 {I20} energy bin could correspond
86KR3cB to the feeding for the 5591 level
86KR G 3240.9 2 0.48 16 C
86KR2 G %IG=0.29 10
86KR cG $E|g=3240.6 {I4}, I|g=0.49 {I10} (1978LeZA, unplaced)
86KR L 5620 20 P
86KR B 0.83 5 6.234 32
86KR cB $I|b=0.8847% {I46} (method B), 0.7795% {I46} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=807 9
86KR L 5653.45 11 (0+,1,2) N
86KR cL J$(2-) in 2016Ur04
86KR B
86KR cB $Apparent I|b=0.59% {I20} from |g-transition intensity balance.
86KR2cB The I|b=0.674% for the 5660 {I20} energy bin could correspond to the
86KR3cB feeding for the 5653 level
86KR G 3303.7 1 0.97 32 nC
86KR2 G %IG=0.59 20
86KR L 5660 20 P
86KR B 0.674 34 6.288 29
86KR cB $I|b=0.7075% {I39} (method B), 0.6397% {I40} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=788 9
86KR L 5700 20 P
86KR B 0.594 25 6.307 26
86KR cB $I|b=0.6189% {I35} (method B), 0.5685% {I37} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=770 9
86KR L 5740 20 P
86KR B 0.499 22 6.345 27
86KR cB $I|b=0.5202% {I31} (method B), 0.4772% {I33} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=752 9
86KR L 5780 20 P
86KR B 0.389 12 6.416 24
86KR cB $I|b=0.4016% {I25} (method B), 0.3771% {I27} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=733 9
86KR L 5820 20 P
86KR B 0.296 10 6.496 25
86KR cB $I|b=0.3059% {I20} (method B), 0.2854% {I21} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=715 9
86KR L 5860 20 P
86KR B 0.224 12 6.578 31
86KR cB $I|b=0.2356% {I15} (method B), 0.2128% {I16} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=697 9
86KR L 5900 20 P
86KR B 0.183 14 6.625 39
86KR cB $I|b=0.1958% {I13} (method B), 0.1692% {I13} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=679 9
86KR L 5923.46 20 (2-)
86KR B
86KR cB $Apparent I|b=0.69% {I20} from |g-transition intensity balance.
86KR2cB The I|b=0.169% for the 5940 {I20} energy bin could correspond to the
86KR3cB feeding for the 5923 level
86KR G 3573.7 2 1.13 32 C
86KR2 G %IG=0.69 20
86KR cG $E|g=3573.3 {I4}, I|g=1.36 {I23} (1978LeZA, unplaced)
86KR L 5940 20 P
86KR B 0.169 15 6.619 44
86KR cB $I|b=0.1841% {I13} (method B), 0.1541% {I12} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=660 9
86KR L 5980 20 P
86KR B 0.182 19 6.54 5
86KR cB $I|b=0.2012% {I14} (method B), 0.1632% {I13} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=642 9
86KR L 6020 20 P
86KR B 0.235 26 6.39 5
86KR cB $I|b=0.2610% {I18} (method B), 0.2093% {I17} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=624 9
86KR L 6047.47 20 (0,1,2) N
86KR cL J$(2-) in 2016Ur04
86KR B
86KR cB $Apparent I|b=0.49% {I20} from |g-transition intensity balance.
86KR2cB The I|b=0.35% for the 6060 {I20} energy bin could correspond to the
86KR3cB feeding for the 6047 level
86KR G 3121.1 2 0.81 16 nC
86KR2 G %IG=0.49 10
86KR L 6060 20 P
86KR B 0.35 3 6.175 44
86KR cB $I|b=0.3792% {I26} (method B), 0.3134% {I25} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=606 9
86KR L 6089.1 5 (1,2)
86KR cL $Level from 1978LeZA
86KR B
86KR cB $Apparent I|b=0.061% {I12} from |g-transition intensity balance.
86KR2cB Part of the I|b=0.535% for the 6100 {I20} energy bin could correspond
86KR3cB to the feeding for the 6089 level
86KR G 6088.9 5 0.10 2 y
86KR2 G %IG=0.061 12
86KR L 6094.08 20 (0,1,2) N
86KR cL J$(2-) in 2016Ur04
86KR B
86KR cB $Apparent I|b=0.29% {I10} from |g-transition intensity balance.
86KR2cB Part of the I|b=0.535% for the 6100 {I20} energy bin could correspond
86KR3cB to the feeding for the 6094 level
86KR G 3167.7 2 0.48 16 nC
86KR2 G %IG=0.29 10
86KR L 6100 20 P
86KR B 0.535 28 5.946 33
86KR cB $I|b=0.562% {I4} (method B), 0.507% {I4} (method A) (2017Ri08, TAGS)
86KRS B EAV=588 9
86KR L 6140 20 P
86KR B 0.80 3 5.725 29
86KR cB $I|b=0.832% {I6} (method B), 0.770% {I6} (method A) (2017Ri08, TAGS)
86KRS B EAV=570 9
86KR L 6141.51 17 (1-,2) N
86KR cL J$(2-) in 2016Ur04
86KR B
86KR cB $Apparent I|b=0.49% {I14} from |g-transition intensity balance.
86KR2cB Part of the I|b=0.80% for the 6140 {I20} energy bin could correspond
86KR3cB to the feeding for the 6142 level
86KR G 3042.3 3 0.32 16 nC
86KR2 G %IG=0.19 10
86KR G 4576.7 2 0.48 16 nC
86KR2 G %IG=0.29 10
86KR cG E$from level-scheme Fig. 7 in 2016Ur04. Authors' Table IV has
86KR2cG incorrect entry of 3167.7, which is |g from 6094 level
86KR cG RI$intensity reported in 2016Ur04 is probably lower than expected due
86KR2cG to the |g-energy spectrum validity up to 4 MeV. This |g was not
86KR3cG reported by 1978LeZA, 1975Hu02 and 1972Ac01.
86KR L 6160.5 4 1-
86KR cL $Level from 1978LeZA
86KR B
86KR cB $Apparent I|b=0.152% {I19} from |g-transition intensity balance.
86KR2cB Part of the I|b=0.80% for the 6140 {I20} energy bin could correspond
86KR3cB to the feeding for the 6142 level
86KR G 6160.3 4 0.25 3 E1 y
86KR cG M$from the Adopted dataset
86KR2 G %IG=0.152 19
86KR cG $E|g=6161.5 {I20}, I|g=0.11 {I6} (1975Hu02)
86KR L 6180 20 P
86KR B 1.06 3 5.556 27
86KR cB $I|b=1.092% {I7} (method B), 1.023% {I8} (method A) (2017Ri08, TAGS)
86KRS B EAV=553 9
86KR L 6211.84 30 1
86KR cL $Level from 1978LeZA and 1972Ac01
86KR B
86KR cB $Apparent I|b=0.81% {I13} from |g-transition intensity balance.
86KR2cB The I|b=1.09% for the 6220 {I20} energy bin could correspond
86KR3cB to the feeding for the 6212 level
86KR G 6211.6 3 1.34 20 D y
86KR cG M$from the Adopted dataset
86KR2 G %IG=0.81 13
86KR cG $E|g=6212.2 {I14}, I|g=0.9 {I2} (1975Hu02)
86KR cG $E|g=6209.5 {I10}, I|g=1.4 {I6} (1972Ac01)
86KR L 6220 20 P
86KR B 1.09 4 5.497 30
86KR cB $I|b=1.127% {I8} (method B), 1.049% {I8} (method A) (2017Ri08, TAGS)
86KRS B EAV=535 9
86KR L 6260 20 P
86KR B 0.91 6 5.526 38
86KR cB $I|b=0.968% {I7} (method B), 0.845% {I7} (method A) (2017Ri08, TAGS)
86KRS B EAV=517 9
86KR L 6300 20 P
86KR B 0.63 6 5.635 49
86KR cB $I|b=0.689% {I5} (method B), 0.567% {I5} (method A) (2017Ri08, TAGS)
86KRS B EAV=500 9
86KR L 6340 20 P
86KR B 0.41 6 5.77 7
86KR cB $I|b=0.466% {I3} (method B), 0.348% {I3} (method A) (2017Ri08, TAGS)
86KRS B EAV=482 9
86KR L 6380 20 P
86KR B 0.30 4 5.85 6
86KR cB $I|b=0.341% {I3} (method B), 0.2494% {I22} (method A) (2017Ri08, TAGS)
86KRS B EAV=465 9
86KR L 6420 20 P
86KR B 0.25 4 5.88 8
86KR cB $I|b=0.2911% {I23} (method B), 0.2170% {I20} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=447 9
86KR L 6450.01 12 (2) N
86KR cL J$(2-) in 2016Ur04; J=2 supported by |g|g(|q)
86KR B
86KR cB $Apparent I|b=1.69% {I17} from |g-transition intensity balance.
86KR2cB The I|b=0.27% for the 6460 {I20} energy bin could correspond to the
86KR3cB feeding for the 6450 level, although, the apparent |b feeding is
86KR4cB much larger than that from TAGS data.
86KR G 3523.8 2 0.32 16 nC
86KR2 G %IG=0.19 10
86KR G 3598.8 2 0.48 16 nC
86KR2 G %IG=0.29 10
86KR G 4885.12 21 1.98 10 D(+Q) -0.12 13 bC
86KR2 G %IG=1.20 8
86KR cG E,RI$values preferred from 1978LeZA, due to |g-spectrum validity up
86KR2cG to 4 MeV in 2016Ur04
86KR cG $E|g=4885.6 {I1}, I|g=0.32 {I16} (2016Ur04)
86KR cG $|g placement from 2016Ur04. Unplaced in 1978LeZA
86KR cG $(4885.6|g)(1564.7|g)(|q): A{-2}=+0.34 {I8}, A{-4}=0.00 {I18}
86KR cG $|d(Q/D)=-0.12 {I13} for J(6450)=2, +0.84 {I35} for J(6450)=3
86KR L 6460 20 P
86KR B 0.27 3 5.79 6
86KR cB $I|b=0.2969% {I24} (method B), 0.2346% {I23} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=430 9
86KR L 6500 20 P
86KR B 0.32 3 5.66 5
86KR cB $I|b=0.347% {I3} (method B), 0.289% {I3} (method A) (2017Ri08, TAGS)
86KRS B EAV=413 9
86KR L 6540 20 P
86KR B 0.39 3 5.511 46
86KR cB $I|b=0.423% {I4} (method B), 0.365% {I4} (method A) (2017Ri08, TAGS)
86KRS B EAV=395 9
86KR L 6580 20 P
86KR B 0.445 22 5.392 39
86KR cB $I|b=0.467% {I4} (method B), 0.422% {I5} (method A) (2017Ri08, TAGS)
86KRS B EAV=378 9
86KR L 6620 20 P
86KR B 0.428 24 5.346 41
86KR cB $I|b=0.451% {I4} (method B), 0.404% {I5} (method A) (2017Ri08, TAGS)
86KRS B EAV=361 8
86KR L 6660 20 P
86KR B 0.342 25 5.377 47
86KR cB $I|b=0.367% {I4} (method B), 0.317% {I4} (method A) (2017Ri08, TAGS)
86KRS B EAV=345 8
86KR L 6700 20 P
86KR B 0.233 25 5.48 6
86KR cB $I|b=0.258% {I3} (method B), 0.207% {I3} (method A) (2017Ri08, TAGS)
86KRS B EAV=328 8
86KR L 6720.5 6 (1,2)
86KR cL $Level from 1978LeZA
86KR B
86KR cB $Apparent I|b=0.067% {I13} from |g-transition intensity balance.
86KR2cB Part of the I|b=0.233% for the 6700 {I20} energy bin or 0.132% for the
86KR3cB 6740 {I20} bin could correspond to the feeding for the 6720 level.
86KR G 6720.2 6 0.11 2 y
86KR2 G %IG=0.067 13
86KR cG $E|g=6722 {I3}, I|g|?0.7 (1975Hu02)
86KR L 6740 20 P
86KR B 0.132 20 5.65 8
86KR cB $I|b=0.1520% {I17} (method B), 0.1126% {I16} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=311 8
86KR L 6768.29 30 (1,2)
86KR cL $Level from 1978LeZA
86KR B
86KR cB $Apparent I|b=0.115% {I13} from |g-transition intensity balance.
86KR2cB The I|b=0.072% for the 6780 {I20} energy bin could correspond
86KR3cB to the feeding for the 6768 level.
86KR G 6768.0 3 0.19 2 y
86KR2 G %IG=0.115 13
86KR cG $E|g=6768.3 {I15}, I|g=0.15 {I4} (1975Hu02)
86KR L 6780 20 P
86KR B 0.072 12 5.84 8
86KR cB $I|b=0.0843% {I10} (method B), 0.0587% {I9} (method A) (2017Ri08, TAGS)
86KRS B EAV=295 8
86KR L 6820 20 P
86KR B 0.038 8 6.04 10
86KR cB $I|b=0.0455% {I6} (method B), 0.0297% {I5} (method A) (2017Ri08, TAGS)
86KRS B EAV=279 8
86KR L 6860 20 P
86KR B 0.023 5 6.18 10
86KR cB $I|b=0.0283% {I4} (method B), 0.0170% {I3} (method A) (2017Ri08, TAGS)
86KRS B EAV=263 8
86KR L 6900 20 P
86KR B 0.016 3 6.25 9
86KR cB $I|b=0.0193% {I3} (method B), 0.0119% {I2} (method A) (2017Ri08, TAGS)
86KRS B EAV=247 8
86KR L 6940 20 P
86KR B 0.015 3 6.19 10
86KR cB $I|b=0.0176% {I3} (method B), 0.119% {I2} (method A) (2017Ri08, TAGS)
86KRS B EAV=231 8
86KR L 6980 20 P
86KR B 0.019 3 6.00 8
86KR cB $I|b=0.0216% {I4} (method B), 0.0165% {I3} (method A) (2017Ri08, TAGS)
86KRS B EAV=215 8
86KR L 7020 20 P
86KR B 0.0311 20 5.69 6
86KR cB $I|b=0.0330% {I6} (method B), 0.0291% {I6} (method A) (2017Ri08, TAGS)
86KRS B EAV=200 8
86KR L 7060 20 P
86KR B 0.0511 11 5.37 6
86KR cB $I|b=0.0522% {I9} (method B), 0.0499% {I11} (method A) (2017Ri08, TAGS)
86KRS B EAV=184 8
86KR L 7100 20 P
86KR B 0.0692 15 5.13 6
86KR cB $I|b=0.0692% {I13} (method B), 0.0692% {I15} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=169 7
86KR L 7140 20 P
86KR B 0.068 3 5.02 7
86KR cB $I|b=0.0711% {I13} (method B), 0.0646% {I14} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=155 7
86KR L 7180 20 P
86KR B 0.041 5 5.11 9
86KR cB $I|b=0.0451% {I9} (method B), 0.0360% {I8} (method A) (2017Ri08, TAGS)
86KRS B EAV=140 7
86KR L 7220 20 P
86KR B 0.016 4 5.38 13
86KR cB $I|b=0.0200% {I4} (method B), 0.0125% {I3} (method A) (2017Ri08, TAGS)
86KRS B EAV=126 7
86KR L 7260 20 P
86KR B 0.0050 16 5.74 16
86KR cB $I|b=0.00657% {I13} (method B), 0.00340% {I8} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=112 7
86KR L 7300 20 P
86KR B 0.0015 6 6.1 2
86KR cB $I|b=0.00206% {I4} (method B), 0.00086% {I2} (method A) (2017Ri08,
86KR2cB TAGS)
86KRS B EAV=98 7
86KR L 7340 20 P
86KR B 0.00048 24 6.41 24
86KR cB $I|b=0.000718 {I15} (method B), 0.000236 {I6} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=85 7
86KR L 7380 20 P
86KR B 0.00021 11 6.56 26
86KR cB $I|b=0.000328% {I7} (method B), 0.000102% {I3} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=72 6
86KR L 7420 20 P
86KR B 0.00010 9 6.64 42
86KR cB $I|b=0.000195% {I4} (method B), 0.0000600% {I15} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=59 6
86KR L 7460 20 P
86KR B 0.00011 6 6.31 30
86KR cB $I|b=0.000173% {I4} (method B), 0.0000537% {I14} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=47 6
86KR L 7500 20 P
86KR B 0.00013 7 5.88 33
86KR cB $I|b=0.000201% {I5} (method B), 0.0000659% {I17} (method A)
86KR2cB (2017Ri08, TAGS)
86KRS B EAV=35 6
86KR L 7540 20 P
86KR B 0.0
86KR cB $I|b=0.0% (method B), 0.0% (method A) (2017Ri08, TAGS)
86KR L 7580 20 P
86KR B 0.0
86KR cB $I|b=0.0% (method B), 0.0% (method A) (2017Ri08, TAGS)
86KR L 7620 20 P
86KR B 0.0
86KR cB $I|b=0.0% (method B), 0.0% (method A) (2017Ri08, TAGS)