62CU 62ZN EC DECAY (9.197 H) 1974JO11,1973GI01,1967AN0125NDS 202507
62CU H TYP=FUL$AUT=Balraj Singh, Huang Xiaolong, and Wang Xianghan$
62CU2 H CIT=NDS 204, 1 (2025)$CUT=30-Jun-2023$
62CU c 1974Jo11 (also 1971JoZN thesis): {+62}Zn from Cu(p,2n),E=25 MeV.
62CU2c Measured E|g, I|g, |g|g-coin using Ge(Li) detector with Compton
62CU3c suppression. A total of 31 |g rays from 41 to 1526 keV were assigned
62CU4c to the decay of {+62}Zn.
62CU d 1973JoZS superseded by 1974Jo11
62CU c 1973Gi01: {+62}Zn from Cu(p,2n),E=25 MeV. Measured E|g, I|g using
62CU2c Ge(Li) detector. Energies and intensities of 19 |g rays reported.
62CU c 1967An01: {+62}Zn from {+63}Cu(p,2n). Measured E|g, I|g using
62CU2c Ge(Li) detector, conversion electrons and positrons using a
62CU3c double-focusing iron-yoke |b spectrometer. Authors present
62CU4c detailed spectra of conversion electron lines for different
62CU5c atomic shells, but the intensities are provided for only the
62CU6c K-shell conversion.
62CU c 1969Ho01: {+62}Zn from Ni({+3}He,n),E<10 MeV. Measured E|g, I|g,
62CU2c |g|g-coin using Ge(Li) detectors. Energies and intensities of 11
62CU3c rays from 41 to 637 keV reported. Deduced |a(K)exp from ce data
62CU4c in 1967An01 and I|g values in their work. Spectra from separated
62CU5c {+62}Zn activity were measured using an anion exchange column and
62CU6c every five minutes discarding the 9.67-min {+62}Cu daughter activity.
62CU c Others:
62CU c 1982Gr10: {+62}Zn from Cu(p,2n),E=15-70 MeV. Measured E|g, I|g, and
62CU2c T{-1/2} of {+62}Zn decay using Ge(Li) detector. Relative intensities
62CU3c of six |g rays reported
62CU c 1975Ro25 (also 1974RoZD thesis): {+62}Zn from Cu(p,2n),E=25 MeV.
62CU2c Measured T{-1/2} of 41-keV level by |g|g(t)
62CU c 1974Wa09: {+62}Zn from {+60}Ni(|a,2n),E not stated. An ion-exchange
62CU2c column was used for separation of {+62}Zn and {+62}Cu fractions.
62CU3c Measured E|g, I|g using Ge(Li) detector. Relative intensities of ten
62CU4c |g rays from 243 to 637 keV were reported, and that of annihilation
62CU5c radiation. Deduced I|b{++}
62CU c 1970BoZE: measured g factor of 41-keV level by perturbed angular
62CU2c correlation technique through the 596|g-41|g cascade.
62CU c 1968Ba21: measured E|g, I|g, |g|g-coin, level half-life by |g|g(t),
62CU2c T{-1/2} of {+62}Zn decay using Ge(Li) and NaI(Tl) detectors.
62CU3c Eight |g rays reported from 42 to 682 keV. The |g-ray energies are
62CU4c given to nearest keV.
62CU c 1967Ro01: {+62}Zn from {+63}Cu(p,2n),E=25 MeV measured E|g, I|g of 11
62CU2c |g rays from 42 to 639 keV using Ge(Li) detector.
62CU c 1967Wi20: measured E|g, I|g of 547|g and 590|g using Ge(Li) detector.
62CU c 1957Br20: measured E|g, I|g, |g|g-coin, |b|g-coin, |g|g(t), |g|g(|q)
62CU2c using NaI(Tl) detectors. Seven |g rays reported from 42 to 700 keV.
62CU c 1954Nu27: measured conversion electrons for 41-keV transition using
62CU2c magnetic spectrometer
62CU c 1950Ha65: measured conversion electrons for 41-keV transition,
62CU2c E|b{++}, |e/|b{++} ratio using magnetic spectrometer
62CU c Total decay energy of 1637 keV {I92} deduced (by RADLIST code) from
62CU2c proposed decay scheme is in agreement with the expected value of
62CU3c 1619.5 keV {I7}, indicating that decay scheme is complete
62CU cG $Measured I(|g{+|+})=824 {I41} (1974Jo11), relative to 100 for
62CU2cG 597|g, for {+62}Zn/{+62}Cu in equilibrium.
62CU cG $Measured I(|g{+|+})=55.10 {I27} (1974Wa09), relative to 100 for
62CU2cG 597|g, from eluted {+62}Zn activity. Also measured
62CU3cG I|g(1173|g from {+62}Cu decay)/I(|g{+|+})=0.416 {I6} from
62CU4cG {+62}Zn/{+62}Cu in equilibrium, and 0.354 {I27} from eluted {+62}Cu
62CU5cG activity; the difference in the two relative intensities attributed
62CU6cG {+62}Zn positron contribution.
62CU cG $Measured I(|b{++}+|e)=43.4% {I8}, I(|e{-K})/I(|b{++})=4.4 {I9}
62CU2cG (1969Ho01, as given in text without giving measured intensities
62CU3cG of I(|g{+|+}) and K x-rays; also in the abstract authors quote
62CU4cG I(|b{++}+|e)=43% {I5}, I(|b{++})/I(|e{-K})=0.22 {I1}).
62CU cG $|a(K)exp deduced by evaluators from measured Ice(K) values in
62CU2cG 1967An01, and I|g values recommended in this dataset. Note that
62CU3cG 1967An01, in their Table 1, listed Ice(K) normalized to theoretical
62CU4cG |a(K) values for the 40.9|g and 596.6|g for mult=M1 for both.
62CU5cG Evaluators treat the listed Ice(K) values as relative intensities,
62CU6cG and deduced |a(K)exp for |g-ray energies using |a(K)=0.575 {I8} for
62CU7cG the 40.9|g
62CU cG $A 1280.8 {I15} |g reported by 1973Gi01 with I|g=0.03 {I1} is not
62CU2cG confirmed by 1974Jo11 within an upper limit of I|g<0.005.
62CU cG $A 682|g, with I|g|?4 {I2} reported by 1968Ba21 is not observed
62CU2cG in any other studies, thus omitted here.
62CU cG E$Weighted averages of values from 1974Jo11, 1973Gi01, 1969Ho01
62CU2cG and 1967An01, when available in the last three references, otherwise
62CU3cG from 1974Jo11. Note that in the averaging procedure, 0.2 keV has been
62CU4cG added to the values from 1969Ho01 in the energy range of 243 and
62CU5cG 394 keV, as these appear systematically lower as compared to the
62CU6cG values in other studies.
62CU cG RI$Weighted averages of values from 1974Jo11, 1982Gr10, 1973Gi01
62CU2cG and 1969Ho01, when available in the last three references, otherwise
62CU3cG from 1974Jo11.
62CU cG E(a),RI(a)$|g from 1974Jo11 only.
62CU cG E(x)$|g from the Adopted dataset, not reported in {+62}Zn |e decay
62CU cG M$From ce data in 1967An01
62CU cL $Levels at 1142 keV and 1281 keV proposed by 1973Gi01 simply on the
62CU2cL basis of g.s. transitions for both levels are rejected by 1974Jo11,
62CU3cL since the 1142|g is seen in coincidence with the 247|g, and no evidence
62CU4cL was found for the existence of a 1280.8|g reported by 1973Gi01.
62CU5cL Note that an 1141.6-keV level is populated in in-beam |g-ray data,
62CU6cL but none of the |g rays from this level reported in the reaction data
62CU7cL seen in {+62}Zn decay.
62CU cL $A 682 level reported by 1968Ba21 is omitted here as a 682|g reported
62CU2cL in this work as g.s. transition is not observed in any other study.
62CU3cL The 394|g placed from this level in 1968Ba21 is assigned, instead, from
62CU4cL 637 level based on |g|g-coin data
62CU cL E$From least-squares fit to E|g data, keeping energy of 40.89-keV level
62CU2cL as fixed.
62CU cL J,T$From the Adopted Levels
62ZN P 0.0 0+ 9.197 H 20 1619.5 7
62ZN cP T$From {+62}Zn Adopted Levels
62ZN cP QP$From 2021Wa16
62CU N 0.251 10 1.0 1.0
62CU cN NR$From unweighted average of 0.241 {I12}, 0.270 {I7} and 0.241 {I9}
62CU2cN obtained from three different measurements as follows:
62CU3cN 1. 0.241 {I12} from total activity (in relative units) of decay of
62CU4cN {+62}Zn=415 {I21}, deduced from observed I(|g{+|+})=824 {I41}
62CU5cN (1974Jo11) in {+62}Zn/{+62}Cu transient equilibrium. Observed
62CU6cN I(|g{+|+}) represents 97.589% {I25} |b{++} branching in the decay of
62CU7cN {+62}Cu. True intensity of I(|g{+|+}) from {+62}Cu decay is corrected
62CU8cN by a factor of [T{-1/2}({+62}Zn)-T{-1/2}({+62}Cu)]/T{-1/2}({+62}Zn) =
62CU9cN 0.9825 {I21}. 2. 0.270 {I7} from total activity (in relative units) of
62CUAcN decay of {+62}Zn=370 {I10} from measured I(|g{+|+})=55.1 {I27}
62CUBcN (1974Wa09) in separated {+62}Zn activity by ion-exchange column,
62CUCcN theoretical value of I|e/I|b{++}(to g.s.)=3.904 {I35}, and summed
62CUDcN I(|g+ce) to the g.s. in the present decay scheme. 3. 0.241 {I9} from
62CUEcN measured I(|b{++}+|e)=43.4 {I8} (1969Ho01), and I(|g+ce)(to g.s.) =
62CUFcN 56.6 {I8}, in {+62}Zn/{+62}Cu transient equilibrium. Measured
62CUGcN intensity of the annihilation radiation is not listed by authors.
62CU PN 3
62CU G 1321.3 7 0.0026 10
62CU2 G %IG=0.00065 25
62CU L 0.0 1+ 9.672 M 8
62CU E 8.4 6 33 2 4.98 4 41 3
62CUS E EAV=255.44 30$CK=0.7052 6$CL=0.07736 7$CM+=0.01351 2
62CU cE $Measured E|b{++}=0.66 MeV {I1} (1950Ha65), which gives
62CU2cE Q(|e)=1682 {I10}
62CU L 40.847 32 2+ 4.57 NS 18
62CU cL $g=+0.67 {I6} (PAC,1970BoZE)
62CU cL T$(507|g+596|g)(41|g)(t) (1975Ro25). Others: 4.8 ns {I1} (1969BoZR),
62CU2cL 2.5 ns {I1} (1968Ba21), <8 ns (1957Br20)
62CU dL $1973RoYR and 1973RoYW superseded by 1975Ro25.
62CU G 40.89 6 99 4 M1 0.645 9 C
62CU2 G %IG=24.9 14
62CU cG $E|g=40.85 {I6}, I|g=98 {I5} (1974Jo11)
62CU cG $E|g=40.94 {I6}, I|g=104 {I10} (1973Gi01)
62CU cG $E|g=40.84 {I13}, I|g=99.4 {I35} (1969Ho01)
62CU cG $E|g=40.88 {I9}, I|g=102 (deduced) (1967An01)
62CU cG $E|g=41.5 {I2}, I(|g+ce)=192 {I19} (1967Ro01)
62CU cG $E|g=41.3 {I3} (1954Nu27), 41.8 {I3} (1950Ha65); both from ce data
62CU cG $Ice(K)=60.2 {I8} (1967An01; K-, L- and M+N-shell lines
62CU2cG observed in conversion electron spectra)
62CU2 G ECC=0.665 30 $
62CUS G KC=0.575 8$LC=0.0607 9$MC=0.00854 12
62CUS G NC=0.000249 4
62CU cG $|a(exp) deduced by evaluators from transition intensity balance at
62CU2cG at 40.8-keV level.
62CU cG $Measured K/(L+M)=8.0 {I15} (1954Nu27), |>6.4 (1950Ha65).
62CU2cG Measured L1/(L2+L3)>10 (1967An01). Theoretical values from BrIcc:
62CU3cG K/(L+M)=8.33 for M1, 5.23 for E2, and 9.6 for E1; L1/(L2+L3)=12.3
62CU4cG for M1, 0.88 for E2, and 5.4 for E1.
62CU cG $Others: |a(K)exp=0.52 {I8} (1954Nu27, corrected
62CU2cG to 0.49 {I8} by 1957Br20 for the presence of 511-annihilation
62CU3cG radiation); |a(exp)=0.65 {I10} (1957Br20, deduced from decay scheme);
62CU cG M$E1 or M1 from K/(L+M) ratio; M1 from |a(exp), |a(K)exp, and
62CU2cG L-subshell ratio. Using |a(exp) and K/(L+M), |d(E2/M1)<0.056 from
62CU3cG BrIccMixing code.
62CU L 243.441 25 2+
62CU G 202.67 6 0.042 5 [M1+E2] 0.025 17 a
62CU2 G %IG=0.0105 13
62CU G 243.42 3 10.04 27 M1 0.00539 8 C
62CU2 G %IG=2.52 12
62CU cG $I|g=9.80 {I25} (1982Gr10), 8.36 {I29} (1974Wa09)
62CU cG $E|g=243.36 {I6}, I|g=9.7 {I5} (1974Jo11)
62CU cG $E|g=243.44 {I3}, I|g=11.1 {I5} (1973Gi01)
62CU cG $E|g=243.18 {I15}, I|g=10.3 {I5} (1969Ho01)
62CU cG $E|g=243.40 {I5}, I|g|?7 (1967An01); I|g=11.0 {I9} for 243|g+247|g
62CU cG $E|g=243.7 {I5}, I|g=15.4 {I16} (1967Ro01)
62CU cG $Ice(K)=0.0480 {I14} (1967An01; K- and L+M-shell lines
62CU2cG observed in conversion electron spectra)
62CU2 G EKC=0.00452 27
62CUS G KC=0.00483 7$LC=0.000488 7$MC=6.86E-5 10
62CUS G NC=2.072E-6 29
62CU cG $|a(K)exp is slightly lower that |a(K) for M1.
62CU L 287.87 4 2+
62CU G 247.00 4 7.64 25 M1 0.00520 7 C
62CU2 G %IG=1.92 10
62CU cG $I|g=7.35 {I19} (1982Gr10), 6.38 {I23} (1974Wa09)
62CU cG $E|g=246.95 {I6}, I|g=7.3 {I4} (1974Jo11)
62CU cG $E|g=247.04 {I4}, I|g=8.3 {I4} (1973Gi01)
62CU cG $E|g=246.70 {I10}, I|g=8.2 {I3} (1969Ho01)
62CU cG $E|g=247.02 {I9}, I|g|?4 (1967An01); I|g=11.0 {I9} for 243|g+247|g
62CU cG $E|g=247.2 {I5}, I|g=11.5 {I12} (1967Ro01)
62CU cG $Ice(K)=0.0313 {I9} (1967An01; K- and L+M-shell lines
62CU2cG observed in conversion electron spectra)
62CU2 G EKC=0.00388 25
62CU cG $|a(K)exp is lower than |a(K) for M1.
62CUS G KC=0.00466 7$LC=0.000470 7$MC=6.62E-5 9
62CUS G NC=1.999E-6 28
62CU L 426.16 7 3+ 0.16 PS GT
62CU G 385.31 9 0.068 6
62CU2 G %IG=0.0171 17
62CU cG $E|g=385.31 {I9}, I|g=0.067 {I6} (1974Jo11)
62CU cG $E|g=385.2 {I4}, I|g=0.08 {I2} (1973Gi01)
62CU L 548.374 32 1+ 0.17 PS GT
62CU E 31.3 15 4.63 2 31.3 15
62CUS E CK=0.8853$CL=0.09761$CM+=0.01706
62CU G 260.48 6 5.68 16 M1 0.00456 6 C
62CU2 G %IG=1.43 7
62CU cG $I|g=5.35 {I13} (1982Gr10), 3.43 {I54} (1974Wa09)
62CU cG $E|g=260.43 {I7}, I|g=5.2 {I3} (1974Jo11)
62CU cG $E|g=260.50 {I6}, I|g=5.9 {I3} (1973Gi01)
62CU cG $E|g=260.32 {I6}, I|g=5.9 {I1} (1969Ho01)
62CU cG $E|g=260.44 {I10}, I|g=2.6 {I5} (1967An01)
62CU cG $E|g=260.7 {I5}, I|g=8.5 {I9} (1967Ro01)
62CU cG $Ice(K)=0.0203 {I14} (1967An01; K- and L+M-shell lines
62CU2cG observed in conversion electron spectra)
62CU2 G EKC=0.00338 30
62CU cG $|a(K)exp is lower than |a(K) for M1
62CUS G KC=0.00409 6$LC=0.000412 6$MC=5.80E-5 8
62CUS G NC=1.754E-6 25
62CU G 304.92 7 1.20 7 [M1+E2] 0.006 4 C
62CU2 G %IG=0.301 21
62CU cG $I|g=0.61 {I17} (1974Wa09)
62CU cG $E|g=304.88 {I9}, I|g=1.11 {I6} (1974Jo11)
62CU cG $E|g=305.00 {I7}, I|g=1.2 {I1} (1973Gi01)
62CU cG $E|g=304.60 {I11}, I|g=1.32 {I7} (1969Ho01)
62CU cG $E|g=305.5 {I10}, I|g=0.77 {I8} (1967Ro01)
62CU G 507.58 10 57 3 M1+E2 0.86 +24-220.0012811 C
62CU2 G %IG=14.3 10
62CU cG $I|g=65.90 {I54} (1974Wa09)
62CU cG $E|g=507.60 {I10}, I|g=57 {I3} (1974Jo11)
62CU cG $E|g=507.5 {I4}, I|g=58 {I10} (1973Gi01)
62CU cG $E|g=507.2 {I10}, I|g=65 {I15} (1969Ho01)
62CU cG $E|g=507.57 {I13}, I|g=60 {I15} (1967An01)
62CU cG $E|g=507.5 {I10}, I|g=77 {I8} (1967Ro01)
62CU cG $Ice(K)=0.0693 {I20} (1967An01; K- and L+M-shell lines
62CU2cG observed in conversion electron spectra)
62CU2 G EKC=0.00115 9
62CU cG $|a(K)exp from ce data in 1967An01 gives |d(E2/M1)=0.86 {I+24-20},
62CU2cG but this value gives B(E2)(W.u.)<1760, as compared to
62CU3cG RUL=300 for B(E2)(W.u).
62CUS G KC=0.00115 10$LC=0.000115 10$MC=1.62E-5 14
62CUS G NC=4.9E-7 4
62CU G 548.38 4 60.6 10 M1+E2 0.51 15 0.00092 6
62CU2 G %IG=15.2 7
62CU cG $I|g=59.7 {I14} (1982Gr10), 59.1 {I11} (1974Wa09)
62CU cG $E|g=548.35 {I11}, I|g=59 {I3} (1974Jo11)
62CU cG $E|g=548.41 {I4}, I|g=60.8 {I10} (1973Gi01)
62CU cG $E|g=548.33 {I6}, I|g=62.2 {I9} (1969Ho01)
62CU cG $E|g=548.33 {I22}, I|g=54 {I5} (1967An01)
62CU cG $E|g=548.7 {I5}, I|g=65 {I7} (1967Ro01)
62CU cG $Ice(K)=0.0528 {I12} (1967An01; K- and L+M-shell lines
62CU2cG observed in conversion electron spectra)
62CU2 G EKC=0.00082 5
62CU cG $|a(K)exp from ce data in 1967An01 gives |d(E2/M1)=0.51 {I15},
62CU2cG but this value gives B(E2)(W.u.)<700, as compared to
62CU3cG RUL=300 for B(E2)(W.u).
62CUS G KC=0.00082 5$LC=8.2E-5 5$MC=1.15E-5 7
62CUS G NC=3.49E-7 21
62CU L 637.484 31 1+ 0.15 PS +28-8
62CU E 28.1 12 4.61 2
62CUS E CK=0.8852$CL=0.09772$CM+=0.01708
62CU G 349.54 7 1.74 11 M1+E2 1.0 +5-4 0.0041 9 C
62CU2 G %IG=0.437 33
62CU cG $I|g=0.44 {I16} (1974Wa09)
62CU cG $E|g=349.60 {I13}, I|g=1.73 {I11} (1974Jo11)
62CU cG $E|g=349.59 {I7}, I|g=1.8 {I1} (1973Gi01)
62CU cG $E|g=349.22 {I9}, I|g=1.59 {I16} (1969Ho01)
62CU cG $E|g=349.69 {I25}, I|g|?1 (1967An01)
62CU cG $E|g=349.5 {I10}, I|g=1.54 {I16} (1967Ro01)
62CU cG $Ice(K)=0.0068 {I10} (1967An01)
62CU2 G EKC=0.0037 6
62CU cG $|a(K)exp from ce data in 1967An01 gives |d(E2/M1)=1.0 {I+5-4},
62CU2cG but this value gives B(E2)(W.u.)=400 {I+800-300}, as compared to
62CU3cG RUL=300 for B(E2)(W.u).
62CUS G KC=0.0037 8$LC=0.00037 8$MC=5.2E-5 11
62CUS G NC=1.53E-6 32
62CU G 394.05 4 8.99 18 M1+E2 0.78 +26-220.0025532 C
62CU2 G %IG=2.26 10
62CU cG $I|g=8.42 {I23} (1982Gr10), 7.01 {I73} (1974Wa09)
62CU cG $E|g=394.03 {I6}, I|g=8.6 {I4} (1974Jo11); |D(I|g)=0.04 in 1974Jo11
62CU2cG seems too low to be realistic, evaluators increase it to 0.4
62CU cG $E|g=394.06 {I4}, I|g=9.2 {I4} (1973Gi01)
62CU cG $E|g=393.84 {I6}, I|g=9.16 {I12} (1969Ho01)
62CU cG $E|g=394.12 {I18}, I|g=6.2 {I10} (1967An01)
62CU cG $E|g=394.5 {I5}, I|g=10.8 {I11} (1967Ro01)
62CU cG $Ice(K)=0.0217 {I24} (1967An01; K- and L+M-shell lines
62CU2cG observed in conversion electron spectra)
62CU2 G EKC=0.00228 28
62CU cG $|a(K)exp from ce data in 1967An01 gives |d(E2/M1)=0.78 {I+26-22},
62CU2cG but this value gives B(E2)(W.u.)=800 {+1100-500}, as compared to
62CU3cG RUL=300 for B(E2)(W.u). For this reason, E2 assigned un 1967An01 is
62CU4cG correct.
62CUS G KC=0.00228 29$LC=0.000231 29$MC=3.2E-5 4
62CUS G NC=9.6E-7 12
62CU G 596.63 4 100 M1 6.64E-4 9 C
62CU2 G %IG=25.1 10
62CU cG $I|g=100 (1982Gr10), 100 (1974Wa09)
62CU cG $E|g=596.56 {I13}, I|g=100 (1974Jo11)
62CU cG $E|g=596.65 {I4}, I|g=100 (1973Gi01)
62CU cG $E|g=596.60 {I6}, I|g=100 (1969Ho01)
62CU cG $E|g=596.68 {I20}, I|g=100 {I8} (1967An01)
62CU cG $E|g=597.0 {I5}, I|g=100 {I10} (1967Ro01)
62CU cG $Ice(K)=0.0590 {I13} (1967An01; K- and L+M-shell lines
62CU2cG observed in conversion electron spectra)
62CU2 G EKC=0.000558 28
62CU cG M$|a(K)exp in slightly lower than |a(K) for M1
62CUS G KC=0.000596 8$LC=5.92E-5 8$MC=8.33E-6 12
62CUS G NC=2.54E-7 4
62CU G 637.47 6 0.97 6 M1+E2 0.0007215
62CU2 G %IG=0.244 18
62CU cG $I|g=0.89 {I9} (1974Wa09)
62CU cG $E|g=637.41 {I7}, I|g=0.98 {I6} (1974Jo11)
62CU cG $E|g=637.53 {I6}, I|g=0.96 {I6} (1973Gi01)
62CU cG $E|g=637.25 {I6}, I|g=3.45 {I25} (1969Ho01, I|g is much
62CU2cG larger than in other studies as it is not corrected for summing,
62CU3cG as pointed out in 1974Jo11; this value is not used in averaging)
62CU cG $E|g=636.9 {I5}, I|g|<1 (1967An01)
62CU cG $E|g=638.5 {I10}, I|g=1.54 {I16} (1967Ro01)
62CU cG $Ice(K)=0.0015 {I7} (1967An01)
62CU2 G EKC=0.0015 7
62CUS G KC=0.00065 13$LC=6.5E-5 14$MC=9.1E-6 19
62CUS G NC=2.8E-7 5
62CU L 644.82 6 (2+)
62CU E 0.0148 LT 7.9 GT ?
62CUS E CK=0.8852$CL=0.09773$CM+=0.01709
62CU cE $No direct |e feeding is expected from 0+ parent to a 2+ level.
62CU2cE Apparent |e feeding of 0.0138 {I10} may be due to unobserved weak |g
62CU3cE rays feeding the 644.8 level
62CU G 644.82 6 0.055 3 a
62CU2 G %IG=0.0138 9
62CU L 698.39 12 (3)+
62CU G 272.3 3 0.0033 x S
62CU2 G %IG=8.3E-4
62CU G 455.0 3 0.0046 x S
62CU2 G %IG=1.16E-3
62CU G 657.5 5 0.005 1 a
62CU2 G %IG=0.00126 26
62CU L 915.33 7 2+
62CU E 0.038 LT 7.2 GT ?
62CUS E CK=0.8845$CL=0.09828$CM+=0.01719
62CU cE $No direct |e feeding is expected from 0+ parent to a 2+ level.
62CU2cE Apparent |e feeding of 0.0351 {I24} may be due to an unreported weak
62CU3cE 514.3|g from 1429.6 level, which would be obscured by the 511-keV
62CU4cE annihilation radiation
62CU G 489.17 7 0.061 6
62CU2 G %IG=0.0153 16
62CU cG $E|g=489.17 {I7}, I|g=0.061 {I6} (1974Jo11)
62CU cG $E|g=489.1 {I4}, I|g=0.06 {I2} (1973Gi01)
62CU G 627.8 4 0.003 1 a
62CU2 G %IG=0.00075 25
62CU G 671.84 9 0.017 2 a
62CU2 G %IG=0.0043 5
62CU G 915.45 16 0.059 4
62CU2 G %IG=0.0148 12
62CU cG $E|g=915.44 {I16}, I|g=0.059 {I4} (1974Jo11)
62CU cG $E|g=915.6 {I6}, I|g=0.08 {I3} (1973Gi01)
62CU L 1221.51 20 (0:3)+
62CU cL J$if |e feeding to this level is real, then J=2 and 3 are not possible
62CU E 0.00146 24 8.1 1 ?
62CUS E CK=0.8827$CL=0.09981$CM+=0.01750
62CU cE IE$weak feeding is considered uncertain. Unobserved weak |g rays
62CU2cE feeding the 1221.5 level may be responsible for this feeding
62CU G 1221.5 2 0.0058 9 a
62CU2 G %IG=0.00146 23
62CU L 1429.60 7 1+
62CU E 0.101 6 5.59 3
62CUS E CK=0.8778$CL=0.10385 3$CM+=0.018307 6
62CU G 731.23 15 0.0088 12 a
62CU2 G %IG=0.00221 31
62CU G 792.03 7 0.034 3 a
62CU2 G %IG=0.0085 8
62CU G 881.4 3 0.056 4
62CU2 G %IG=0.0141 12
62CU cG $E|g=881.4 {I3}, I|g=0.056 {I4} (1974Jo11)
62CU cG $E|g=881.4 {I8}, I|g=0.08 {I3} (1973Gi01)
62CU G 1142.21 29 0.133 8
62CU2 G %IG=0.0334 24
62CU cG $E|g=1141.91 {I11}, I|g=0.133 {I8} (1974Jo11)
62CU cG $E|g=1142.5 {I2}, I|g=0.13 {I3} (1973Gi01)
62CU G 1186.2 3 0.015 5 a
62CU2 G %IG=0.0038 13
62CU G 1389.1 4 0.045 3
62CU2 G %IG=0.0113 9
62CU cG $E|g=1389.1 {I4}, I|g=0.045 {I3} (1974Jo11)
62CU cG $E|g=1389.1 {I5}, I|g=0.05 {I2} (1973Gi01)
62CU G 1429.9 3 0.111 10
62CU2 G %IG=0.0279 28
62CU cG $E|g=1429.7 {I7}, I|g=0.106 {I10} (1974Jo11)
62CU cG $E|g=1429.9 {I3}, I|g=0.13 {I2} (1973Gi01)
62CU L 1525.98 17 1+
62CU E 0.0089 14 5.99 7
62CUS E CK=0.8673 2$CL=0.11261 15$CM+=0.02006 3
62CU G 827.59 14 0.0115 14 a
62CU2 G %IG=0.0029 4
62CU G 1485.1 5 0.002 1 a
62CU2 G %IG=0.00050 25
62CU G 1525.9 6 0.022 5 a
62CU2 G %IG=0.0055 13