39AR 39CL B- DECAY (56.2 M) 1987WA12 18NDS 201803
39AR H TYP=FUL$AUT=JUN CHEN$CIT=NDS 149, 1 (2018)$CUT=1-Jan-2018$
39AR c 1987Wa12: {+39}Cl source was produced via the {+37}Cl(t,p) reaction
39AR2c with E=3.1 MeV triton provided by the Van de Graaff accelerator at
39AR3c the Brookhaven National Laboratory on a BaCl{-2} target (90.4%
39AR4c in {+37}Cl). |g rays were detected with a Ge-Na(Tl) Compton-suppression
39AR5c spectrometer. Measured E|g, I|g. Deduced levels, |b-decay and |g-ray
39AR6c branching ratios, log {Ift}.
39AR c 1972En01: {+39}Cl source was produced via the {+37}Cl(t,p) reaction
39AR2c with E=3.0 MeV triton provided by the Van de Graaff accelerator at
39AR3c the Brookhaven National Laboratory on a BaCl{-2} target (96.1%
39AR4c in {+37}Cl). |g rays were detected with a Ge(Li) detector and a
39AR5c NaI(Tl) detector. Measured E|g, I|g, |g|g-coin, |g(t). Deduced levels,
39AR6c |b-decay and |g-ray branching ratios, log {Ift}, parent T{-1/2}.
39AR c 1956Pe38: {+39}Cl source was produced via the {+40}Ar(|a,|ap) reaction
39AR2c with alpha beam provided by the University of Washington 60-in
39AR3c cyclotron on a argon gas target. |b particles and conversion electrons
39AR4c were detected with a scintillation spectrometer and |g rays were
39AR5c detected with NaI(Tl) scintillation spectrometers. Measured E|g, I|g,
39AR6c E|b, I|b, E(ce), I(ce), |g|g-coin, |b|g-coin, |g(t). Deduced levels, J,
39AR7c |p, T{-1/2}, |b-decay branching ratios, log {Ift}, |b-decay end-point
39AR8c energies, |g-ray multipolarities.
39AR c 1976Fa10: Measured |b|g(|q,circ pol). Deduced |g-ray multipolarities
39AR2c and mixing ratios for 250|g and 1517|g from 1517.5 level.
39AR c Others: isotopic identification and T{-1/2}:
39AR2c 1952Ru23, 1950Ha77, 1949Ha53
39AR d Earlier reports of possible {+39}Cl identification: 1. A 1.1 h
39AR2d activity reported by King et al. (Phys Rev 55, 1118(A) (1939))
39AR3d in {+36}S(|a,p) E=16 MeV reaction.
39AR4d 2. D.R. Miller, Ph.D. thesis, UCRL-142 (1948)
39AR c The total average radiation energy released by {+39}Cl |b{+-} decay
39AR2c is 3444 keV {I74} (calculated by evaluator using the computer program
39AR3c RADLST). This value agrees well with Q(|b{+-})=3442 keV {I5} (2017Wa10)
39AR4c and shows the completeness of the decay scheme.
39AR cG $A(circ pol)=asymmetry coefficient of circularly polarized |b|g(|q)
39AR cG E$Values with uncertainties are from 1987Wa12 and those without
39AR2cG uncertainties are from level-energy differences, unless otherwise
39AR3cG noted.
39AR cG RI$Relative intensities normalized to I|g(1267|g)=100. Quoted values
39AR2cG are from 1987Wa12, unless otherwise noted.
39AR cG E(A),RI(A)$|g not seen and upper intensity limit quoted by 1987Wa12.
39AR cB IB$Deduced from |g-ray intensities imbalances (by evaluator) at each
39AR2cB level and the g.s. |b{+-} feeding=7 {I2} from 1956Pe38.
39AR cL E$From a least-squares fit to |g-ray energies with uncertainties
39AR2cL if available, unless otherwise noted.
39AR cL J$From Adopted Levels
39AR cL E(A)$Not populated in this decay and upper limit of |b{+-} feeding
39AR2cL given in 1987Wa12; energy is rounded-off value from Adopted Levels.
39AR cL T$From delayed coincidence (1956Pe38)
39CL P 0 3/2+ 56.2 M 6 3442 5
39CL cP J,T$From Adopted Levels of {+39}Cl.
39CL cP QP$From 2017Wa10
39AR N 0.536 13 1.00
39AR cN NR$From |SI|g(|g to g.s.)=93 {I2} from %|b{+-}(g.s.)=7 {I2} in
39AR2cN 1956Pe38
39AR PN 3
39AR L 0 7/2-
39AR B 7 2 9.3 2 1U
39ARS B EAV=1530.4 24
39AR cB IB$from the analysis of the |b spectrum in 1956Pe38
39AR cB E$end-point energy=3450 {I20} (1956Pe38)
39AR L 1267.207 8 3/2- 0.5 NS LT
39AR B 4.7 17 7.1 2
39ARS B EAV=908.7 24
39AR cB IB$98 {II4} (1956Pe38)
39AR cB E$end-point energy=2180 (1956Pe38)
39AR G 1267.191 11 100.0
39AR2 G %IG=53.6 13
39AR cG E$others: 1267.20 {I5} (1972En01), 1266 {I10} (1956Pe38)
39AR cG $|a(exp)<0.0016 (1956Pe38)
39AR L 1517.540 8 3/2+ 0.95 NS 5
39AR B 83 3 5.65 2
39ARS B EAV=791.5 24
39AR cB IB$85 {I6} (1956Pe38)
39AR cB E$end-point energy=1910 {I20} (1956Pe38)
39AR G 250.333 3 86 3 E1 9.86E-4
39AR2 G %IG=46.1 11
39ARS G KC=0.000905 13$LC=7.41E-5 11$MC=7.21E-6 10
39AR cG E$others: 250.26 {I7} (1972En01), 246 {I3} (1956Pe38)
39AR cG RI$others: 87 {I3} (1972En01), 90 {I10} (1956Pe38)
39AR cG M$from A(circ pol)=+0.111 {I12} (1976Fa10); |a(exp)<0.0021 in 1956Pe38
39AR2cG implies E1 or M1.
39AR G 1517.49810 73.2 16 M2+E3 +0.20 4
39AR2 G %IG=39.3 10
39ARS G CC=6.78E-5 10$KC=3.80E-5 6$LC=3.11E-6 5$MC=3.04E-7 5
39ARS G IPC=2.64E-5 4
39AR cG E$others: 1517.36 {I8} (1972En01), 1520 {I10} (1956Pe38)
39AR cG RI$others: 71.0 {I15} (1972En01), 85 {I5} (1956Pe38)
39AR cG M,MR$from A(circ pol)=-0.028 {I14} (1976Fa10)
39AR cG $|a(exp)<0.0032 (1956Pe38)
39AR L 2092.74919 5/2-
39AR B 0.011 LT 8.9 GT ?
39ARS B EAV=527.8 23
39AR G 825.533 0.017 8
39AR2 G %IG=0.009 5
39AR G 2092.74 3 0.173 4
39AR2 G %IG=0.093 3
39AR cG E,RI$other: E|g=2093.0 {I10}, I|g=0.15 {I2} (1972En01)
39AR L 2342.2 A ?
39AR B 0.0008 LT 9.7 GT ?
39ARS B EAV=417.2 22
39AR G 2342.1 0.002 LT A ?
39AR2 G %IG=0.0005 6
39AR L 2358.284 11 1/2+
39AR B 2.55 8 6.16 2
39ARS B EAV=410.1 22
39AR G 840.77525 0.248 6
39AR2 G %IG=0.133 5
39AR cG E,RI$other: E|g=841.4 {I13}, I|g=0.10 {I6} (1972En01)
39AR G 1091.056 8 4.51 9
39AR2 G %IG=2.42 8
39AR cG E,RI$other: E|g=1090.97 {I11}, I|g=4.7 {I2} (1972En01)
39AR G 2358.2 0.01 LT A ?
39AR2 G %IG=0.003 3
39AR L 2433.48 3 3/2-
39AR B 0.008 LT 8.5 GT ?
39ARS B EAV=377.4 22
39AR G 915.8610 0.010 7
39AR2 G %IG=0.005 4
39AR G 1166.25 5 0.057 5
39AR2 G %IG=0.031 3
39AR G 2433.49 8 0.0208 13
39AR2 G %IG=0.0112 8
39AR L 2481.5 A ?
39AR B 0.0017 LT 9.1 GT ?
39ARS B EAV=356.8 22
39AR G 2481.4 0.004 LT A ?
39AR2 G %IG=0.0011 11
39AR L 2503.418 11 (5/2)+
39AR B 2.23 7 5.97 2
39ARS B EAV=347.4 22
39AR G 410.69020 0.179 4
39AR2 G %IG=0.096 4
39AR G 985.861 9 3.90 7
39AR2 G %IG=2.09 7
39AR cG E,RI$other: E|g=985.79 {I14}, I|g=4.0 {I2} (1972En01)
39AR G 1236.19 5 0.112 5
39AR2 G %IG=0.060 3
39AR cG E,RI$other: E|g=1235.4 {I10}, I|g=0.21 {I8} (1972En01)
39AR G 2503.28 7 0.010 1
39AR2 G %IG=0.0054 6
39AR L 2523.7 A ?
39AR B 0.0015 LT 9.1 GT ?
39ARS B EAV=338.7 22
39AR G 2523.6 0.003 LT A ?
39AR2 G %IG=0.0008 8
39AR L 2631.6 A ?
39AR B 0.0020 LT 8.8 GT ?
39ARS B EAV=293.1 21
39AR G 538.8 0.004 LT A ?
39AR2 G %IG=0.0011 11
39AR L 2651.1 A ?
39AR B 0.0008 LT 9.1 GT ?
39ARS B EAV=285.0 21
39AR G 2651.0 0.002 LT A ?
39AR2 G %IG=0.0005 6
39AR L 2755.5 A ?
39AR B 0.0020 LT 8.5 GT ?
39ARS B EAV=241.9 21
39AR G 2755.4 0.005 LT A ?
39AR2 G %IG=0.0013 14
39AR L 2829.934 17 1/2+
39AR B 0.60 2 5.84 2
39ARS B EAV=211.8 20
39AR G 198.3 0.005 LT A ?
39AR2 G %IG=0.0013 14
39AR G 306.2 0.003 LT A ?
39AR2 G %IG=0.0008 8
39AR G 326.5 0.030 LT A ?
39AR2 G %IG=0.008 8
39AR G 396.46 4 0.082 3
39AR2 G %IG=0.0440 19
39AR G 471.6 0.015 LT A ?
39AR2 G %IG=0.004 4
39AR G 1312.36020 0.469 11
39AR2 G %IG=0.252 9
39AR cG E,RI$other: E|g=1312.1 {I10}, I|g=0.53 {I6} (1972En01)
39AR G 1562.70425 0.535 12
39AR2 G %IG=0.287 10
39AR cG E,RI$other: E|g=1561.6 {I10}, I|g=0.58 {I6} (1972En01)
39AR G 2830.2 4 0.003 LT ?
39AR2 G %IG=0.0008 8
39AR L 2949.95 10 (3/2+,5/2)
39AR B 0.027 4 6.85 7
39ARS B EAV=164.7 20
39AR G 446.6113 0.026 5
39AR2 G %IG=0.014 3
39AR G 1432.2715 0.024 3
39AR2 G %IG=0.0129 17
39AR L 3287.0 A ?
39AR B 0.0029 LT 6.1 GT ?
39ARS B EAV=44.6 16
39AR G 2019.7 0.007 LT A ?
39AR2 G %IG=0.0019 19