250CF    250ES EC DECAY (8.6 H)                                  01NDS    200112
250CF  H TYP=FUL$AUT=Y. Akovali$CIT=NDS 94,131 (2001)$CUT=1-Aug-2001$
250ES  P 0.0          (6+)             8.6 H     1              2100      SY
250CF  N  1.0         1.0      0.985   15
250CF PN                                                                     2
250CF CG           NO ALPHA DECAY FROM THE 250ES GS WAS OBSERVED, AND AN UPPER
250CF2CG LIMIT OF 3% WAS GIVEN BY 1970AH01. THE EC DECAY BRANCH OF %EC>97
250CF3CG IS ADOPTED FOR 250ES G.S. FOR THE ABSOLUTE INTENSITY NORMALIZATION
250CF4CG FACTOR, THE EC BRANCHING APPEAR HERE AS 98.5% 15, RATHER THAN THE
250CF5CG ADOPTED BRANCHINGS OF %EC>97.
250CF TG
250CF2TG CALIFORNIUM X-RAYS (1977FR03):
250CF3TG
250CF4TG                E(X-RAY)       I(X-RAY) %EC DECAY
250CF5TG               ----------      -------------------
250CF6TG                109.82 5            46.2 23           XKA2
250CF7TG                115.05 5            73.4 37           XKA1
250CF8TG                128.6 1                               XKB3
250CF9TG                                    30.6 15           XKB1P
250CF2TG                129.8 1                               XKB1
250CF3TG                133.66 10           10.3 5            XKB2P
250CF4TG
250CF CG           THE SUM OF X-RAY INTENSITY DUE TO CK BRANCHINGS AND
250CF2CG K-ELECTRON CONVERSIONS IS CALCULATED TO BE XKA1=46, XKA2=74.
250CF CG E         MEASUREMENT OF 1977FR03.
250CF CG RI        RELATIVE PHOTON INTENSITY, MEASURED BY 1977FR03.
250CF2CG THE RELATIVE INTENSITIES WERE NORMALIZED SUCH THAT SUM OF TRANSITION
250CF3CG INTENSITIES FEEDING THE GROUND-STATE BAND IS 100%. THEREFORE, THE
250CF4CG IG'S LISTED HERE CORRESPOND TO PER 100 EC DECAYS.
250CF CG M,MR      DETERMINED BY 1977FR03 FROM THEIR CE DATA. MULTIPOLARITIES
250CF2CG IN SQUARE BRACKETS ARE DEDUCED FROM LEVEL SCHEME, THEY ARE NOT
250CF3CG DETERMINED EXPERIMENTALLY.
250CF CG TI        SUM OF ICE+RI, MEASURED BY 1977FR03, UNLESS NOTED OTHERWISE.
250CF2CG THE RELATIVE CE INTENSITIES WERE NORMALIZED TO IG'S BY USING WELL
250CF3CG RESOLVED CONVERSION LINES FROM TRANSITIONS WITH ESTABLISHED
250CF4CG MULTIPOLARITIES (DETERMINED FROM SUB-SHELL RATIOS). THEORETICAL
250CF5CG CONVERSION COEFFICIENTS WERE UTILIZED WHEN CONVERSION-ELECTRON LINES
250CF6CG WERE NOT SEEN.
250CF CE IE        DEDUCED FROM INTENSITY BALANCE AT EACH LEVEL. THE BRANCHES
250CF2CE SUM TO 106% 7.
250CF  G 299.6     2  1.00   9
250CF  L 0.0          0+
250CF  L 42.721    5  2+
250CF  G 42.721    5  0.09   1  E2                        1293   100      5
250CFS G LC=939 $ MC=266 $
250CF  L 141.875   10 4+
250CF  G 99.160    10 0.80   7  E2                       23.8    21.0     10
250CFS G LC=17.0 $ MC=4.84 $ NC+=1.934 $
250CF  L 296.22    6  6+
250CF  G 154.35    6  0.31   7  E2                        3.33   1.3      3
250CFS G KC=0.155 $ LC=2.27 $ MC=0.647 $ NC+=0.258 $
250CF CG TI        CALCULATED FROM IG AND CC. THE AUTHORS OF 1977FR03 OBTAINED
250CF2CG CE INTENSITIES FROM THE MEASURED ICE(L2), AND LISTED TI=2.1 2.
250CF  L 871.57    3  2-
250CF  G 829.00    7  73.6   37 E1                     0.00658   74       4
250CFS G KC=0.00528 $ LC=0.00097 $
250CF  L 905.89    2  3-
250CF  G 34.325    5  0.06   AP M1+E2     0.42   5     7.4E2  11 48.5     25
250CFS G LC=545 80 $ MC=149 23 $
250CF CG RI        TOTAL INTENSITY OF 48.5 25 AND CC=7.4E2 11 GIVE RI=0.066 11.
250CF  G 764.2     1  4.0    2  E1                     0.00758   4.0      2
250CFS G KC=0.00608 $ LC=0.00113 $
250CF  G 863.2     1  5.1    3  E1                     0.00613   5.1      3
250CFS G KC=0.00493 $ LC=0.00090 $
250CF  L 951.98    2  4-
250CF  G 46.093    5  0.19   2  M1+E2     0.40   2        200 10 32.8     15
250CFS G LC=147 7 $ MC=39.6 21 $
250CF  G 80.412    10 0.29   3  E2                        63.3   18.6     20
250CFS G LC=45.2 $ MC=12.9 $ NC+=5.14 $
250CF CG TI        1977FR03 LISTED TI=12.9 15 BY ADDING EXPECTED L1, L2, M2
250CF2CG AND HIGHER SHELL ELECTRONS. BECAUSE THE UNCERTAINTIES ON ICE'S
250CF3CG ARE LARGER THAN THAT FOR IG, TI CALCULATED FROM IG AND CC IS GIVEN
250CF4CG FOR 80.412-KEV TRANSITION.
250CF  G 810.2     1  9.1    5  E1                     0.00684   9.1      5
250CFS G KC=0.00549 $ LC=0.00101 $
250CF  L 1008.51   2  5-
250CF  G 56.527    13 0.09   1  M1+E2     0.37   +20-10    80 40 5.5      5
250CFS G LC=60 30 $ MC=16 8 $ NC+=6 3 $
250CF  G 102.623   10 0.21   3  E2                      20.28    4.0      4
250CFS G LC=14.50 $ MC=4.13 $ NC+=1.650 $
250CF CG           RI=0.21 3 IS CALCULATED FROM ICE(L3; MEASURED)=1.09 15,
250CF2CG L3C(E2 THEORY)=5.24 AND ICE(M2; MEASURED)=0.51 4, M2C(E2 THEORY)=2.400.
250CF  G 712.3     1  1.34   9    [E1]                 0.00859   1.34     9
250CFS G KC=0.00688 $ LC=0.00129 $
250CF  G 866.7     1  1.3    1    [E1]                 0.00608   1.3      1
250CFS G KC=0.00489 $ LC=0.00090 $
250CF  L 1071.37   2  3+
250CF  G 119.4     3 0.00006 3 [E1]                    0.0956                  S
250CFS G LC=0.0714 $ MC=0.0177 $ NC+=0.00656 $
250CF CG E         GAMMA WAS NOT OBSERVED IN 8.6-H 250ES EC DECAY. ENERGY IS
250CF2CG FROM 250BK B- DECAY.
250CF CG RI        CALCULATED FROM RI(119G)/RI(1028G)=0.0015 5/10.9 3,
250CF2CG MEASURED IN 250BK B- DECAY.
250CF  G 165.44    15 0.00012 2 [E1]                    0.1726                 S
250CFS G KC=0.1305 $ LC=0.0315 $ MC=0.00776 $ NC+=0.00289 $
250CF CG E         GAMMA WAS NOT OBSERVED IN 8.6-H 250ES EC DECAY. ENERGY IS
250CF2CG FROM 250BK B- DECAY.
250CF CG RI        CALCULATED FROM RI(165G)/RI(1028G)=0.0030 4/10.9 3,
250CF2CG MEASURED IN 250BK B- DECAY.
250CF  G 199.72    200.00010 2  [E1]                    0.1127                 S
250CFS G KC=0.0861 $ LC=0.01986 $ MC=0.00488 $ NC+=0.00182 $
250CF CG E         GAMMA WAS NOT OBSERVED IN 8.6-H 250ES EC DECAY. ENERGY IS
250CF2CG FROM 250BK B- DECAY.
250CF CG RI        CALCULATED FROM RI(199G)/RI(1028G)=0.0024 3/10.9 3,
250CF2CG MEASURED IN 250BK B- DECAY.
250CF  G 929.4     2 0.14    2   [E2]                   0.0180
250CFS G KC=0.01280 $ LC=0.00394 $
250CF  G 1028.5    2 0.45    4   (E2)                   0.01489
250CFS G KC=0.01079 $ LC=0.00308 $
250CF CG M         DETERMINED IN 250BK B- DECAY.
250CF  L 1255.39   4  4-
250CF  G 184.2     2  0.47   7    [E1]                  0.1352   0.53     7
250CFS G KC= 0.1029 $ LC=0.0242 $ MC=0.00595 $ NC+=0.00221 $
250CF  G 246.92    6  3.8    2  M1+E2     1.00   6        1.86 9 10.7     4
250CFS G KC=1.29 8 $ LC=0.416 7 $ MC=0.1078 14 $ NC+=0.0418 5 $
250CF  G 303.41    3  22.3   11  M1+E2    0.92   7      1.09  10 46.7     16
250CF3 G KC=0.79 5 $ LC=0.221 7 $ MC=0.0566 14 $ NC+=0.0219 5 $
250CF  G 349.4     1  20.4   9  E2+M1     4.6    5      0.223 12 25.0     10
250CFS G KC=0.106 10 $ LC=0.0850 14 $ MC=0.0232 3 $ NC+=0.00916 11 $
250CF  G 383.7     1  14.0   7  E2                      0.1346   16.0     8
250CFS G KC=0.0564 $ LC=0.0566 $ MC=0.0155 $ NC+=0.00615 $
250CF  L 1311.00   4  5-
250CF  E                                                                       ?
250CF  G 55.602    5  0.20   2  M1+E2     0.59   5      133   9   22.9    20
250CFS G LC=96 8 $ MC=26.3 22 $ NC+=10.4 9 $
250CF  L 1377.76   4 (6)-
250CF  G 66.759    10 0.05   2  M1(+E2)   0.5    LE     37    7  1.9      9
250CFS G LC=31 9 $ MC=8 3 $ NC+=3.2 11 $
250CF CG MR        E2 ADMIXTURE OF LE 20% LISTED IN 1977FR03 WAS DETERMINED
250CF2CG FROM L1/L3=0.6 1/<0.3. THE L2 LINE WAS MASKED.
250CF3CG L1C(EXP)=0.6 1/0.05 2=12 6 GIVES MR=0.9 +12-6.
250CF CG TI        TRANSITION INTENSITY IS LISTED AS (1.0-1.9) BY 1977FR03.
250CF2CG SINCE THE INTENSITY BALANCE AT THE 1377.85 LEVEL REQUIRES
250CF3CG TI(66.759G) GE TI(79.998G), THE HIGHER NUMBER IS GIVEN HERE.
250CF  L 1396.09   7 (5)-
250CF  E                                                                       ?
250CF  G 85.086    7  1.07   9  M1(+E2)   0.27   LE      15.4 16 17.5     10
250CFS G LC=11.5 5 $ MC=2.86 14 $ NC+=1.11 6 $
250CF CG MR        E2 ADMIXTURE OF LE 7% LISTED IN 1977FR03 WAS DETERMINED
250CF2CG FROM L1/L3=10.0 5/0.5 5. L1C(EXP)=10.0 5/1.07 9 GIVES MR=0.21 +25-21.
250CF CG           CC(MR=0.14 14)=15.4 +16-7.
250CF  G 140.694   10 4.7    3  M1(+E2)   0.1    LT      15.6   77        5
250CFS G KC=12.1 $ LC=2.58 $ MC=0.636 $ NC+=0.247 $
250CF  L 1457.76   4 (6)-
250CF  E                        10     5     7.0 3               10       5
250CFS E CK=0.694 20 $ CL=0.222 14 $ CM+=0.084 6
250CF  G 61.667    5  0.85   7  M1+E2     0.20   3       45.1 16 39       2
250CFS G LC=33.3 16 $ MC=8.5 5 $ NC+=3.29 19 $
250CF  G 79.998    30 0.11   3 (M1+E2)   0.3     LT    18.7   11 2.3      AP
250CFS G LC=13.9 20 $ MC=3.5 6 $ NC+=1.35 24 $
250CF  G 146.8     1  0.22   6  M1(+E2)   0.6    LT      13.0 18 3.2      3
250CFS G KC=9.9 19 $ LC=2.33 10 $ MC=0.58 5 $ NC+=0.227 19 $
250CF  L 1478.37   4 (5)-
250CF  E                        54     2    6.27 19              54       2
250CFS E CK=0.691 21 $ CL=0.224 15 $ CM+=0.085 7
250CF  G 82.282    6  2.6    2  M1(+E2)   0.06   LT     16.33 11 45.0     20
250CFS G LC=12.16 8 $ MC=3.008 23 $ NC+=1.166 9 $
250CF  G 222.993   20 1.85   13 M1+E2     0.42   7       3.71 15 8.6      3
250CFS G KC=2.82 13 $ LC=0.663 10 $ MC=0.1661 18 $ NC+=0.0639 6 $
250CF  L 1499.53   4 (6)-
250CF  E                        42     4     6.35 20             42       4
250CFS E CK=0.687 24 $ CL=0.227 16 $ CM+=0.086 8
250CF  G 41.775    5  0.29   3  M1+E2     0.14   +7-14    144 30 35       4
250CFS G LC=107 22 $ MC=27 6 $
250CF  G 103.440   10 0.71   6  M1+E2     0.25   +15-10    9.1 9 7.2      7
250CFS G LC=6.7 6 $ MC=1.68 19 $ NC+=0.66 5 $