166GD 166GD IT DECAY (950 NS) 2014PA55 ENSDF 201501
166GD H TYP=FUL$AUT=BALRAJ SINGH$CIT=ENSDF$CUT=25-JAN-2015$
166GD c 2014Pa55: {+166}Gd produced in {+9}Be({+238}U,F),E=345 MeV/nucleon
166GD2c reaction at the Radioactive Ion Beam Factory (RIBF) at RIKEN
166GD3c accelerator laboratory. Nuclei were separated in terms of
166GD4c mass-to-charge (A/q) ratio and atomic number Z using BigRIPS and
166GD5c ZeroDegree spectrometers. Ions of {+166}Gd were implanted in a
166GD6c copper passive stopper, and the gamma rays from the isomer were
166GD7c detected using Euroball-RIKEN Cluster array (EURICA) consisting of
166GD8c 84 HPGe crystals in a 4|p configuration. Measured E|g, I|g, |g|g-coin,
166GD9c (ion implants)|g correlations, delayed-gamma-ray spectroscopy, isomer
166GDAc half-life. Deduced levels, J, |p, multipolarity. Comparison with
166GDBc potential energy surface calculations including |b{-6} deformation
166GD cG E(X),RI(X)$The |g ray seen in |g|g-coin spectrum, not in (ion)|g
166GD2cG correlated spectrum. Intensity is obtained from transition intensity
166GD3cG balances at relevant levels and theoretical internal conversion
166GD4cG coefficients
166GD cG E(W)$Weak |g ray. This |g ray does not belong to lower-mass isotopes
166GD2cG with one, two or three electrons (H-, He- or Li-like) as shown by the
166GD3cG known |g-ray data for these isotopes
166GD cG M$As implied from transition intensity balances and |DJ|p. These are
166GD2cG not given explicitly in 2014Pa55.
166GD cG M(Y)$Dominant M1 according to e-mail reply of Jan 22, 2015 from one
166GD2cG of the authors (Z. Podolyak) of 2014Pa55, and that small E2 admixture
166GD3cG is possible
166GD cG CC$Value overlaps M1 and E2 when |d(E2/M1) is not given for
166GD2cG mult=(M1(+E2))
166GD cL E$From least-squares fit to E|g data
166GD cL J$As proposed by 2014Pa55 based on systematics of even-even nuclides
166GD2cL for low-lying levels and potential-energy surface calculations for
166GD3cL higher levels above 1 MeV, supported by multipolarities obtained from
166GD4cL intensity balances.
166GD cL BAND(A)$The g.s. band.
166GD2cL Calculations suggest |b{-2}=0.296, |b{-4}=0.015, |b{-6}=-0.020 for
166GD3cL ground state
166GD cL BAND(B)$|g-vibrational band.
166GD2cL The 2+ bandhead is expected at |?1190 keV
166GD cL BAND(C)$|p3/2[411]~#|p5/2[413],K|p=(4+).
166GD2cL Calculations suggest |b{-2}=0.299, |b{-4}=0.017, |b{-6}=-0.022 for
166GD3cL 4+ bandhead
166GD P 1601.5 11 (6-) 950 NS 60
166GD N 0.560 17 0.560 17 1
166GD cN NR$Summed transition intensity=100 for 146.3- and 183.1-keV transitions
166GD PN 3
166GD G 220 W
166GD G 269 W
166GD L 0 0+ 4.8 S 10 A
166GD cL T$from Adopted Levels
166GD L 70.0 10 (2+) A
166GD G 70 1 16 2 [E2] 9.7 6 X
166GD cG RI$deduced by the evaluator from intensity balance. 2014Pa55 list
166GD2cG 15 {I1}
166GDS G KC=2.58 8$LC=5.5 4$MC=1.30 10$NC=0.290 21$OC=0.038 3$PC=0.000132 5
166GD L 230.8 11 (4+) A
166GD G 160.8 2 82 6 (E2) 0.465
166GDS G KC=0.299 5$LC=0.1289 20$MC=0.0300 5
166GDS G NC=0.00672 10$OC=0.000907 14$PC=1.630E-5 24
166GD L 479.6 11 (6+) A
166GD G 248.7 3 21 3 (E2) 0.1087
166GDS G KC=0.0802 12$LC=0.0222 4$MC=0.00507 8
166GDS G NC=0.001142 17$OC=0.0001597 24$PC=4.83E-6 7
166GD L 1240.1 11 (3+) B
166GD G 1009.1 7 14 4
166GD G 1169.9 3 34 7
166GD L 1318.9 11 (4+) B
166GD G 78 1 7 2 (M1) 4.12 17 X
166GDF G FLAG=Y
166GDS G KC=3.47 14$LC=0.50 2$MC=0.109 5$NC=0.025 1$OC=0.0039 2$PC=0.00026 1
166GD G 1088.1 3 30 6
166GD G 1249.2 3 18 5
166GD L 1350.1 11 (4+) C
166GD cL $There is a non-physical intensity balance of -24 {I7} relative
166GD2cL units. According to e-mail reply of Jan 22, 2015 from one
166GD3cL of the authors (Z. Podolyak) of 2014Pa55, this situation cannot
166GD4cL be resolved from the present data, and that there may be some missing
166GD5cL transitions from the 1350-keV level
166GD G 1119.3 3 8 3
166GD G 1280.1 2 3 1
166GD L 1418.4 11 (5+) B
166GD G 99.8 3 24 3 (M1) 2.02 4 Y
166GDS G KC=1.71 $LC=0.247 4$MC=0.0537 9$NC=0.01235 21$OC=0.00191 4$PC=12.8E-5 2
166GD G 178.3 2 11 2 [E2] 0.327
166GDS G KC=0.219 4$LC=0.0836 13$MC=0.0194 3
166GDS G NC=0.00435 7$OC=0.000591 9$PC=1.224E-5 18
166GD G 938.6 4 15 4
166GD G 1187.5 3 36 7
166GD L 1455.2 11 (5+) C
166GD G 37 7 4 [M1] 5.7 5 47 27 S
166GDS G LC=4.49 7$MC=0.976 14$NC=0.225 4$OC=0.0347 5$PC=0.00230 4
166GD cG E,RI$existence of this transition is implied from |g|g-coin data.
166GD2cG Intensity is obtained from transition intensity balance at 1418 level
166GD G 105.0 3 12 2 (M1(+E2)) 1.93 18
166GDS G KC=1.25 23$LC=0.5 4$MC=0.12 8$NC=0.027 17$OC=0.0037 21$PC=8.E-5 3
166GD G 137 1 5 3 (M1(+E2)) 0.817 23 X
166GDS G KC=0.59 11$LC=0.18 8$MC=0.041 20$NC=0.009 5$OC=0.0013 5$PC=3.8E-5 14
166GD G 1224.3 3 10 4
166GD L 1601.5 11 (6-) 950 NS 60 M
166GD2 L %IT=100
166GD cL $Configuration=|n5/2[512]~#|n7/2[633], |b{-2}=0.291, |b{-4}=0.014,
166GD2cL |b{-6}=-0.017
166GD cL T$from decay curves obtained from (ion implantation)(|g)(t)
166GD2cL correlations for 146-, 161-, 183-, 249-, 1088-, 1170- and 1188-keV
166GD3cL |g rays
166GD G 146.3 2 66 5 (E1) 0.1047
166GD cG $Reduced hindrance f{-|n}=3.77|*10{+7} {I24} (2014Pa55), assuming the
166GD2cG the 146-keV transition feeds the K|p=5+ band with |n=1
166GDS G KC=0.0884 13$LC=0.01281 19$MC=0.00277 4
166GDS G NC=0.000629 10$OC=9.36E-5 14$PC=5.20E-6 8
166GD G 183.1 2 100 (E1) 0.0574
166GD cG $Reduced hindrance f{-|n}=356 {I7} (2014Pa55), assuming the
166GD2cG the 183-keV transition feeds the |g band with |n=3
166GDS G KC=0.0486 7$LC=0.00692 10$MC=0.001497 22
166GDS G NC=0.000341 5$OC=5.11E-5 8$PC=2.94E-6 5