159EU 159SM B- DECAY (11.37 S) 1987WI14 ENSDF 202312
159EU H TYP=FUL$AUT=Balraj Singh$CIT=ENSDF$CUT=07-June-2023$
159EU H TYP=FUL$AUT=C. W. Reich$CIT=NDS 113, 157 (2012)$CUT=31-Dec-2010$
159EU c 1987Wi14 (also 1990An31,1987Gr12): {+159}Sm produced and identified in
159EU2c SF decay of {+252}Cf, followed by mass separation at the INEL-ISOL
159EU3c facility of the INEL, Idaho Falls. Measured E|g, I|g for 16 |g rays,
159EU4c x rays using Ge(Li) detectors.
159EU c 1986Ma12: {+159}Sm produced in {+235}U(n,F) (1986Ma12), followed by
159EU2c mass separation at TRISTAN facility at Brookhaven National Laboratory.
159EU3c Measured half-life of the decay of {+159}Sm and two |g rays of 114 and
159EU4c 190 keV.
159EU c The |g data and decay scheme are from 1987Wi14.
159EU cB $With a Q value of 3805 keV and levels reported only to 1052 keV, the
159EU2cB scheme is not complete. The computed log{Ift} values may be lower than
159EU3cB might otherwise be expected. The effect of higher-energy levels would
159EU4cB be to reduce these I|b{+-} values and increase the log{Ift} values.
159EU cB IB$From |g intensity balances. Value for ground-state branch is assumed
159EU2cB to be equal to that to the 75 level. Since the scheme is incomplete, no
159EU3cB uncertainties are given.
159EU cG E,RI$From 1987Wi14
159EU cG MR(S)$Authors argue that the M1 component is "asymptotically unhindered
159EU2cG and intrinsically quite strong", so the transition is predominantly M1
159EU3cG (1987Wi14).
159EU cL E$From least-squares fit to |g energies.
159EU cL J$From the Adopted Levels, based on assignments in (pol t,|a).
159EU2cL except that for the 1052 level, which is based on this decay.
159EU cL BAND(A)$|p5/2[413]
159EU cL BAND(B)$|p5/2[532]
159SM P 0.0 5/2- 11.37 S 15 3836 7
159SM cP J,T$From {+159}Sm Adopted Levels. Configuration=|n5/2[523] (1987Wi14)
159SM cP QP$From 2021Wa16
159EU N 0.46 1.0 1.0
159EU cN NR$From 100% feeding of the ground state, with I|b{+-}(0)=I|b{+-}(75).
159EU2cN If I|b{+-}(0)=0, the normalization factor would be 0.51.
159EU PN 3
159EU L 0.0 5/2+ A
159EU B 10 6.0
159EUS B EAV=1585 30
159EU L 75.41 4 7/2+ A
159EU B 10 6.0
159EUS B EAV=1550 30
159EU G 75.44 4 9.6 6 (M1+E2) 0.50 18 4.7 4
159EUS G KC=3.28 15$LC=1.1 4$MC=0.25 9$
159EUS G NC=0.057 19$OC=0.0081 25$PC=0.00035 3
159EU cG MR$0.50 {I18} (1987Wi14) from the constancy of the ratio of intrinsic
159EU2cG M1 matrix element within the rotational band to its intrinsic
159EU3cG quadrupole moment and |d(96).
159EU L 172.00 6 9/2+ A
159EU B 1.3 8.4 1U
159EUS B EAV=1483 30
159EU G 96.65 8 1.8 4 (M1+E2) 0.48 18 2.17 9
159EUS G KC=1.64 6$LC=0.41 11$MC=0.093 25$
159EUS G NC=0.021 6$OC=0.0031 7$PC=0.000172 12
159EU cG MR$0.48 {I18} deduced (1987Wi14) from calculation of E2 portion from
159EU2cG Alaga rules and I|g(172).
159EU G 172.09 12 3.4 4 [E2] 0.358 5
159EUS G KC=0.241 4$LC=0.0903 13$MC=0.0208 3$
159EUS G NC=0.00463 7$OC=0.000651 10$PC=1.99E-5 3
159EU L 189.80 5 5/2- B
159EU B 21 5.6
159EUS B EAV=1498 30
159EU G 114.42 6 7.9 4 [E1] 0.197 3
159EUS G KC=0.1662 24$LC=0.0244 4$MC=0.00524 8$
159EUS G NC=0.001181 17$OC=0.000179 3$PC=1.413E-5 20
159EU G 189.79 9 100 [E1] 0.0504 7
159EUS G KC=0.0427 6$LC=0.00601 9$MC=0.001291 19$
159EUS G NC=0.000293 5$OC=4.50E-5 7$PC=3.88E-6 6
159EU L 254.54 5 7/2- B
159EU B 23 5.6
159EUS B EAV=1468 30
159EU G 64.76 6 2.5 3 [M1,E2] 10 3
159EUS G KC=4.3 12$LC=4 4$MC=0.9 8$
159EUS G NC=0.21 18$OC=0.029 23$PC=0.00042 19
159EU cG M$from expected reduced M1 transition probabilities and a reasonable
159EU2cG value for the intrinsic quadrupole moment, 1987Wi14 deduce that this
159EU3cG transition is primarily M1 with only a few percent E2.
159EU G 82.58 5 1.7 3 [E1] 0.475 7
159EUS G KC=0.398 6$LC=0.0609 9$MC=0.01312 19$
159EUS G NC=0.00295 5$OC=0.000438 7$PC=3.23E-5 5
159EU G 179.09 9 12.5 6 [E1] 0.0588 8
159EUS G KC=0.0499 7$LC=0.00704 10$MC=0.001513 22$
159EUS G NC=0.000343 5$OC=5.26E-5 8$PC=4.49E-6 7
159EU G 254.43 8 21.2 9 [E1] 0.0233 3
159EUS G KC=0.0198 3$LC=0.00274 4$MC=0.000589 9$
159EUS G NC=0.0001337 19$OC=2.07E-5 3$PC=1.85E-6 3
159EU L 333.61 12 3/2+
159EU cL $Configuration=|p3/2[411]
159EU B 2.3 6.5
159EUS B EAV=1432 30
159EU G 143.90 12 2.1 3 [E1] 0.1060 15
159EUS G KC=0.0896 13$LC=0.01285 19$MC=0.00276 4$
159EUS G NC=0.000625 9$OC=9.53E-5 14$PC=7.86E-6 12
159EU G 333.20 26 2.5 4 [M1,E2] 0.054 13
159EUS G KC=0.045 12$LC=0.0075 4$MC=0.00165 6$
159EUS G NC=0.000375 16$OC=5.8E-5 5$PC=4.7E-6 16
159EU L 1051.79 12 7/2-
159EU cL J$|g rays to 5/2+, 5/2-, 7/2-, and 9/2+ levels and allowed-unhindered
159EU2cL (au) |b{+-} decay (log {Ift}=5.0) from the parent, which is interpreted
159EU3cL as the |n5/2,5/2[523] |) |p7/2,7/2[523] transition, which is the only
159EU4cL available 'au' transition in this mass region.
159EU B 32.1 5.0
159EUS B EAV=1103 30
159EU G 797.2 5 13.2 24 [M1,E2] 0.0058 16 S
159EUS G KC=0.0049 14$LC=0.00069 16$MC=0.00015 4$
159EUS G NC=3.4E-5 8$OC=5.4E-6 13$PC=5.2E-7 16
159EU G 861.97 14 39.6 24[M1,E2] 0.0048 13 S
159EUS G KC=0.0041 11$LC=0.00057 13$MC=0.00012 3$
159EUS G NC=2.8E-5 7$OC=4.5E-6 11$PC=4.3E-7 13
159EU G 879.78 29 5.0 7 [E1] 1.38E-3 2
159EUS G KC=0.001186 17$LC=0.0001544 22$MC=3.30E-5 5$
159EUS G NC=7.54E-6 11$OC=1.192E-6 17$PC=1.183E-7 17
159EU G 976.65 32 5.7 8 [E1] 1.13E-3 2
159EUS G KC=0.000972 14$LC=0.0001260 18$MC=2.69E-5 4$
159EUS G NC=6.15E-6 9$OC=9.74E-7 14$PC=9.72E-8 14
159EU G 1051.7 3 6.0 14 [E1] 9.86E-414
159EUS G KC=0.000847 12$LC=0.0001095 16$MC=2.34E-5 4$
159EUS G NC=5.34E-6 8$OC=8.47E-7 12$PC=8.48E-8 12