159EU 159SM B- DECAY 1987WI14 12NDS 201201
159EU H TYP=FUL$AUT=C. W. Reich$CIT=NDS 113, 157 (2012)$CUT=31-Dec-2010$
159EU D DATA SET UPDATED (MARCH, 2010) BY CW REICH TO INCLUDE RECALCULATED
159EU2D ICC VALUES, QP VALUE, LOGFT AND AVG. EB VALUES, TOGETHER WITH
159EU3D MODIFIED COMMENTS.
159EU c {+159}Sm produced by thermal-neutron fission of {+235}U (1986Ma12) and
159EU2c spontaneous fission of {+252}Cf (1987Wi14). In both cases
159EU3c identification was by mass separation and the genetic relation to the
159EU4c {+159}Eu daughter activity.
159EU c The |g data and decay scheme are from 1987Wi14.
159EU D Experimental methods:
159EU c 1986Ma12: produced by thermal-neutron fission of {+235}U with mass
159EU2c separation in TRISTAN; report half-life and 2 |g's (114, 190).
159EU c 1987Gr12: same as 1987Wi14; report half-life.
159EU c 1987Wi14: produced by spontaneous fission of {+252}Cf with mass
159EU2c separation; report half-life and 16 |g's and all in scheme. Deduce
159EU3c I|b{+-} and some multipolarities and mixing ratios.
159EU c 1990An31: repeat half-life from 1987Wi14.
159EU cB $With a Q value of 3805~keV and levels reported only to 1052~keV, the
159EU2cB scheme is not complete. The computed log{Ift} values may be lower than
159EU3cB might otherwise be expected. The effect of higher-energy levels would
159EU4cB be to reduce these I|b{+-} values and increase the log{Ift} values.
159EU cB IB$From |g intensity balances. Value for ground-state branch is assumed
159EU2cB to be equal to that to the 75 level. Since the scheme is incomplete, no
159EU3cB uncertainties are given.
159EU cG MR(S)$Authors argue that the M1 component is "asymptotically unhindered
159EU2cG and intrinsically quite strong", so the transition is predominantly M1
159EU3cG (1987Wi14).
159EU cL E$From least-squares fit to |g energies.
159EU cL J$From {+159}Eu Adopted Levels and based on the (t,|a) assignments of
159EU2cL 1979Bu05, except that for the 1052 level, which is based on this decay.
159EU3cL See the Adopted Levels for the band assignments.
159SM P 0 5/2- 11.37 S 15 3805 65
159EU N 0.46 1.0 1.0
159EU cN NR$calculated to give 100% feeding of the ground state, with
159EU2cN I|b{+-}(0)=I|b{+-}(75). If I|b{+-}(0)=0, the normalization factor would
159EU3cN be|?0.51.
159EU PN 3
159EU L 0.0 (5/2+)
159EU B 10 6.0
159EUS B EAV=1585 30
159EU L 75.41 4 (7/2+)
159EU B 10 6.0
159EUS B EAV=1550 30
159EU G 75.44 4 9.6 6 [M1+E2] 0.50 18 4.7 4
159EUS G KC=3.28 15$LC=1.1 4$MC=0.25 9$NC+=0.066 21
159EUS G NC=0.057 19$OC=0.0081 25$PC=0.00035 3
159EU cG MR$0.50 {I18} (1987Wi14) from the constancy of the ratio of intrinsic
159EU2cG M1 matrix element within the rotational band to its intrinsic
159EU3cG quadrupole moment and |d(96).
159EU L 172.00 6 (9/2+)
159EU B 1.3 8.4 1U
159EUS B EAV=1483 30
159EU G 96.65 8 1.8 4 [M1+E2] 0.48 18 2.17 9
159EUS G KC=1.64 6$LC=0.41 11$MC=0.093 25$NC+=0.024 6
159EUS G NC=0.021 6$OC=0.0031 7$PC=0.000172 12
159EU cG MR$0.48 {I18} deduced (1987Wi14) from calculation of E2 portion from
159EU2cG Alaga rules and I|g(172).
159EU G 172.09 12 3.4 4 [E2] 0.358
159EUS G KC=0.241 4$LC=0.0903 13$MC=0.0208 3$NC+=0.00530 8
159EUS G NC=0.00463 7$OC=0.000651 10$PC=1.99E-5 3
159EU L 189.80 5 (5/2-)
159EU B 21 5.6
159EUS B EAV=1498 30
159EU G 114.42 6 7.9 4 [E1] 0.197
159EUS G KC=0.1662 24$LC=0.0244 4$MC=0.00524 8$NC+=0.001374 20
159EUS G NC=0.001181 17$OC=0.000179 3$PC=1.413E-5 20
159EU G 189.79 9 100 [E1] 0.0504
159EUS G KC=0.0427 6$LC=0.00601 9$MC=0.001291 19$NC+=0.000341 5
159EUS G NC=0.000293 5$OC=4.50E-5 7$PC=3.88E-6 6
159EU L 254.54 5 (7/2-)
159EU B 23 5.6
159EUS B EAV=1468 30
159EU G 64.76 6 2.5 3 [M1,E2] 10 3
159EUS G KC=4.3 12$LC=4 4$MC=0.9 8$NC+=0.24 20
159EUS G NC=0.21 18$OC=0.029 23$PC=0.00042 19
159EU cG M$from expected reduced M1 transition probabilities and a reasonable
159EU2cG value for the intrinsic quadrupole moment, 1987Wi14 deduce that this
159EU3cG transition is primarily M1 with only a few percent E2.
159EU G 82.58 5 1.7 3 [E1] 0.475
159EUS G KC=0.398 6$LC=0.0609 9$MC=0.01312 19$NC+=0.00342 5
159EUS G NC=0.00295 5$OC=0.000438 7$PC=3.23E-5 5
159EU G 179.09 9 12.5 6 [E1] 0.0588
159EUS G KC=0.0499 7$LC=0.00704 10$MC=0.001513 22$NC+=0.000400 6
159EUS G NC=0.000343 5$OC=5.26E-5 8$PC=4.49E-6 7
159EU G 254.43 8 21.2 9 [E1] 0.0233
159EUS G KC=0.0198 3$LC=0.00274 4$MC=0.000589 9$NC+=0.0001563 22
159EUS G NC=0.0001337 19$OC=2.07E-5 3$PC=1.85E-6 3
159EU L 333.61 12 (3/2+)
159EU B 2.3 6.5
159EUS B EAV=1432 30
159EU G 143.90 12 2.1 3 [E1] 0.1060
159EUS G KC=0.0896 13$LC=0.01285 19$MC=0.00276 4$NC+=0.000728 11
159EUS G NC=0.000625 9$OC=9.53E-5 14$PC=7.86E-6 12
159EU G 333.20 26 2.5 4 [M1,E2] 0.054 13
159EUS G KC=0.045 12$LC=0.0075 4$MC=0.00165 6$NC+=0.000437 22
159EUS G NC=0.000375 16$OC=5.8E-5 5$PC=4.7E-6 16
159EU L 1051.79 12 (7/2-)
159EU B 32.1 5.0
159EUS B EAV=1103 30
159EU G 797.2 5 13.2 24 [M1,E2] 0.0058 16 S
159EUS G KC=0.0049 14$LC=0.00069 16$MC=0.00015 4$NC+=4.0E-5 9
159EUS G NC=3.4E-5 8$OC=5.4E-6 13$PC=5.2E-7 16
159EU G 861.97 14 39.6 24[M1,E2] 0.0048 13 S
159EUS G KC=0.0041 11$LC=0.00057 13$MC=0.00012 3$NC+=3.3E-5 8
159EUS G NC=2.8E-5 7$OC=4.5E-6 11$PC=4.3E-7 13
159EU G 879.8 3 5.0 7 [E1] 1.38E-3
159EUS G KC=0.001186 17$LC=0.0001544 22$MC=3.30E-5 5$NC+=8.85E-6 13
159EUS G NC=7.54E-6 11$OC=1.192E-6 17$PC=1.183E-7 17
159EU G 976.6 3 5.7 8 [E1] 1.13E-3
159EUS G KC=0.000972 14$LC=0.0001260 18$MC=2.69E-5 4$NC+=7.22E-6 11
159EUS G NC=6.15E-6 9$OC=9.74E-7 14$PC=9.72E-8 14
159EU G 1051.7 3 6.0 14 [E1] 9.86E-4
159EUS G KC=0.000847 12$LC=0.0001095 16$MC=2.34E-5 4$NC+=6.27E-6 9
159EUS G NC=5.34E-6 8$OC=8.47E-7 12$PC=8.48E-8 12