148GD 148TB EC DECAY (60 M) 1979SHZF,1985TI03 26NDS 202601
148GD H TYP=FUL$AUT=N. NICA$CIT=NDS 208, 1 (2026)$CUT=17-Jan-2026$
148GD c 1993KrZW,1992KrZN: measured E|g, I|g, |g|g coin, ce, |g(|q) from
148GD2c oriented nuclei. The following levels with their assigned J|p by these
148GD3c authors have not been placed in the level scheme because their
148GD4c placement was not shown:
148GD4c scheme: 3521, 3795 (1,2+), 4274 (2+,3,4+), 4338 (3-,4+), 4559 (1-,2+),
148GD5c 4862 (2-,3,4), 4960, 5018 (3,4), 5061 (3-,4+), 5303, 5400 (3-,4+).
148GD c Measured: |g, |g|g (1973Kr10,1973Vy01,1973Vy02,1974Ne01,1979ShZF,
148GD2c \1985Ti03), |g(|q) (1985Ti01), ce (1973Vy01,1979ShZF), |b{++}
148GDxc (1961Bo19,1975PyZZ), Gamow-Teller strength distribution (2016Na02,
148GD2c 2003NaZV,2001AlZY)
148GD c Decay scheme is that of 1979ShZF and 1985Ti03
148GD c Level scheme is incomplete and the evaluated
148GD2c I|b and I|e, especially for the weak transitions, are less reliable.
148GD cE $Level scheme is incomplete reason for which the values of intensity
148GD2cE and log| {ft} are rounded off and no uncertainties are given
148GD cE |b{++} with E|b=4610 {I80} (I|b=1.00, I|b/ce(K)(784|g)|?10),
148GD2cE 3840 {I150} (0.47), 2730 {I300} (0.75) (1975PyZZ); 4600, 2600
148GD3cE (1961Bo19) were observed. However, from |e/|b{++}=1.541 {I93} (to 1864
148GD4cE level) follows Q(|e)=5290 {I50}; therefore, E|b+(g.s.)=4270 {I45}
148GDxcE (1985Ti01)
148GD cE $Level scheme is incomplete and the evaluated
148GD2cE I|b and I|e, especially for the weak transitions, are less reliable.
148GD cG |a(K)exp were normalized to |a(K)(784|g)=0.0039 (E2)
148GDxcG (1979ShZF,1993KrZW)
148GD cG E From 1979ShZF, except as indicated otherwise
148GD cG RI Relative intensity from 1979ShZF, except as indicated
148GDxcG otherwise
148GD cG E(A),RI(A)$From 1985Ti03
148GD cG M From adopted gammas; supported by internal conversion data
148GD2cG and |g(|q) of oriented nuclei from this decay
148GD cG MR From adopted gammas; supported by |g(|q) from 1993KrZW,
148GD2cG 1992KrZN from this decay
148GD cL E From a least-squares fit to E|g
148GD cL J From adopted levels; supported by internal conversion data
148GD2cL and |g(|q) of oriented nuclei from this decay
148GD cL T$From adopted levels
148GD cL J(E) From |g(|q) from oriented nuclei (1993KrZW).
148GD cL J(F) From |g(|q) of oriented nuclei
148GD dG CC$From BrIcc v2.3e (17-Jun-2020) 2008Ki07, "Frozen Orbitals" appr.
148GD DE EAV,LOGFT$FROM BetaShape v2.4 (Jun-2024) 2023MO21.
148TB P 0.0 2- 60 M 1 5732 13
148TB cP QP$From 2021Wa16
148GD N 0.84 AP 1.0 1.0
148GD cN NR$from I|b{++}/Ice(K)(784|g)|?10 to g.s. (1975PyZZ), and the default
148GD2cN condition |S(I|g+I|b{++}+I|e)(g.s.)=100.
148GD2cN
148GD2dN From gtol and logft
148GD2dN Sum|g(g.s.)(-784|g) 13.3 1.9
148GD2dN |aK(784|g) 0.0039
148GD2dN Ib+(g.s.)/|aK(784|g) 10
148GD2dN I(784|g) 100.0 1.9
148GD2dN I|aK(784|g) 0.390 0.005
148GD2dN Ib+(g.s.) 3.90 0.05
148GD2dN ec/b+(g.s.) 4.83E-01 6.40E-03
148GD2dN Iec(g.s.) 1.88
148GD2dN SumI(g.s.) 119.1
148GD2dN (NR) 0.84
148GD2dN (Iec+Ib+)(g.s.) 3.90+1.88=5.78
148GD2dN (Iec+Ib+)(g.s.)norm 5.78*.84=4.9
148GD2dN
148GD2dN From GLSC(11/06/2025) and BetaShape(2.4 06/2024)
148GD2dN Sum|g(g.s.)(-784|g) 13.3 1.9
148GD2dN |aK(784|g) 0.0039
148GD2dN Ib+(g.s.)/|aK(784|g) 10
148GD2dN I(784|g) 100.0 1.9
148GD2dN I|aK(784|g) 0.3900 0.0074
148GD2dN Ib+(g.s.) 3.900 0.074
148GD2dN ec/b+(g.s.) 4.83E-01 6.40E-03
148GD2dN Iec(g.s.) 2.05
148GD2dN SumI(g.s.) 119.25
148GD2dN (NR) 0.84
148GD2dN (Iec+Ib+)(g.s.) 3.90+2.05=5.95
148GD2dN (Iec+Ib+)(g.s.)norm 5.95*.84=5.0
148GD2dN
148GD PN 3
148GD G 841.59 160.316 22
148GD2 G %IG AP 0.27
148GD G 1167 0.13 4 A ?
148GD2 G %IG AP 0.11
148GD G 1215.0 6 0.20 4 A
148GD2 G %IG AP 0.17
148GD G 1679 0.33 5 A ?
148GD2 G %IG AP 0.28
148GD G 1988.7 4 0.39 5
148GD2 G %IG AP 0.33
148GD G 2168.0 4 0.37 5
148GD2 G %IG AP 0.31
148GD G 2247.32 120.39 4
148GD2 G %IG AP 0.33
148GD G 2288.10 150.48 4
148GD2 G %IG AP 0.4
148GD G 2331.92 150.61 3
148GD2 G %IG AP 0.51
148GD G 2362.9 3 0.68 4
148GD2 G %IG AP 0.57
148GD G 2485.94 150.63 5
148GD2 G %IG AP 0.53
148GD G 2593.3 6 0.31 12
148GD2 G %IG AP 0.26
148GD G 2858.5 5 0.33 8
148GD2 G %IG AP 0.28
148GD G 2871.8 7 0.45 8
148GD2 G %IG AP 0.38
148GD G 3552.9 5 0.35 4
148GD2 G %IG AP 0.29
148GD G 3644.9 5 0.44 5
148GD2 G %IG AP 0.37
148GD G 3685.8 5 0.60 5
148GD2 G %IG AP 0.5
148GD G 3983.7 5 0.35 4
148GD2 G %IG AP 0.29
148GD L 0.0 0+ 72.3 Y 23
148GD E 3.3 AP1.7 AP9.9 AP 5.0 AP 1U
148GDS E EAV=2102 6$CK=0.2894 26$CL=0.04216 38$CM+=0.0131 1
148GD cE TI from I|b{++}/ce(K)(784|g)|?10 (1975PyZZ), |e/|b{++} ratio,
148GD2cE and sum of I|g, I|e+I|b{++} to g.s.=100
148GD L 784.433 152+ 4.2 PS 12
148GD E 21.1 AP7.9 AP7.1 AP 29.0 AP
148GDS E EAV=1776 6$CK=0.2280 25$CL=0.03279 35$CM+=0.01016 9
148GD cE IB I|b{++}(rel)=0.47 (1975PyZZ)
148GD G 784.430 16100.0 19E2 0.00466 7
148GDS G KC=0.00390 5$LC=0.000597 8$MC=0.0001305 18
148GDS G NC=2.99E-5 4$OC=4.53E-6 6$PC=2.69E-7 4
148GD2 G %IG AP 84
148GD cG M |a(K)exp=0.0039 (1979ShZF,1993KrZW) normalization value;
148GD2cG |a(L)exp=0.00062 {I4} (1993KrZW), |a(M)exp=0.000149 {I17} (1993KrZW)
148GD cG A{-2}=-0.73 {I24} (1992KrZN)
148GD L 1273.490 183- 34.7 PS 21
148GD E 6.5 AP3.5 AP7.3 AP 10.0 AP
148GDS E EAV=1551 6$CK=0.2974 31$CL=0.04285 45$CM+=0.01328 12
148GD G 489.049 1223.5 5E1+M2 +0.18 9 0.0075 30
148GDS G KC=0.0063 25$LC=9.E-4 4$MC=2.0E-4 9
148GDS G NC=4.6E-5 20$OC=7.0E-6 32$PC=4.5E-7 21
148GD2 G %IG AP 20
148GD cG M |a(K)exp=0.0046 {I3} (1979ShZF,1993KrZW), |a(L)exp=0.00062
148GDxcG {I9} (1993KrZW)
148GD cG MR from 1993KrZW, 1992KrZN
148GD cG A{-2}=0.00 {I16} (1993KrZW,1992KrZN)
148GD L 1416.376 194+ 8.1 PS 24
148GD E 2.8 AP4.5 AP9.0 AP 7.3 AP 1U
148GDS E EAV=1469 6$CK=0.5195 36$CL=0.0764 5$CM+=0.02377 15
148GD G 142.878 140.367 17E1 0.1116 16
148GDS G KC=0.0941 13$LC=0.01368 19$MC=0.00296 4
148GDS G NC=0.000672 9$OC=9.98E-5 14$PC=5.53E-6 8
148GD2 G %IG AP 0.31
148GD cG M |a(K)exp=0.120 {I24} (1973Vy01)
148GD G 631.947 1712.65 25E2 0.0077211
148GDS G KC=0.00638 9$LC=0.001044 15$MC=0.0002298 32
148GDS G NC=5.25E-5 7$OC=7.88E-6 11$PC=4.36E-7 6
148GD2 G %IG AP 11
148GD cG M |a(K)exp=0.0066 {I4} (1979ShZF,1993KrZW), |a(L)exp=0.00112
148GDxcG {I13} (1993KrZW)
148GD cG A{-2}=-0.39 {I15} (1992KrZN)
148GD L 1834.59 4 2+,3+ E
148GD E 0.26 AP0.24 AP8.4 AP 0.50 AP
148GDS E EAV=1294 6$CK=0.4040 39$CL=0.0583 6$CM+=0.01810 15
148GD G 1050.15 4 0.965 33E2+M3 0.0026618
148GDS G KC=0.00225 15$LC=0.000325 24$MC=7.1E-5 5
148GDS G NC=1.62E-5 12$OC=2.49E-6 19$PC=1.58E-7 12
148GD2 G %IG AP 0.81
148GD cG M |a(K)exp=0.0023 {I8} (1979ShZF,1993KrZW)
148GD cG MR +3 {I+4-1} or -0.12 {I19} if J|p=2+ or +0.31 {I12} if J|p=3+
148GDxcG (1993KrZW)
148GD cG A{-2}=-0.27 {I23} if J|p=2+; -0.23 {I19} if J|p=3+ (1993KrZW)
148GD L 1863.445 242+
148GD E 9.2 AP8.8 AP6.8 AP 18.0 AP
148GDS E EAV=1281 6$CK=0.4103 40$CL=0.0593 6$CM+=0.01839 15
148GD cE E$2404 {I50}, 2421 {I70} (1985Ti03)
148GD cE IE |e/|b{++}=1.541 {I93}; |eK(exp)/|b{++}=1.265 {I100}
148GDxcE (1985Ti01)
148GD cE IB I|b{++}(rel)=0.75
148GD G 589.9 7 0.71 4 A
148GD2 G %IG AP 0.6
148GD G 1079.025 2513.6 3M1+E2 +4.6 +35-140.00242 7
148GDS G KC=0.00205 6$LC=0.000291 8$MC=6.31E-5 17
148GDS G NC=1.45E-5 4$OC=2.23E-6 6$PC=1.42E-7 5
148GD2 G %IG AP 11
148GD cG M |a(K)exp=0.00162 {I11} (1979ShZF,1993KrZW)
148GD cG MR from 1985Ti01 (|g|g(|q)). Other: >+4 (1993KrZW)
148GD cG A{-2}=0.030 {I20} (1993KrZW,1992KrZN)
148GD G 1863.39 4 6.69 13
148GD2 G %IG AP 5.6
148GD L 1912.98 7 4-
148GD E 0.4 AP1.0 AP9.4 AP 1.4 AP
148GDS E EAV=1250 6$CK=0.6165 34$CL=0.0912 5$CM+=0.02839 15
148GD G 639.47 7 3.14 12M1 0.0136219
148GDS G KC=0.01159 16$LC=0.001595 22$MC=0.000345 5
148GDS G NC=7.94E-5 11$OC=1.236E-5 17$PC=8.44E-7 12
148GD2 G %IG AP 2.6
148GD cG M |a(K)exp=0.0086 {I8} (1979ShZF), 0.0087 {I8} (1993KrZW)
148GD L 2082.00 6 5- 2.6 PS 13
148GD G 808.56 7 0.524 22E2 0.00435 6
148GDS G KC=0.00365 5$LC=0.000554 8$MC=0.0001210 17
148GDS G NC=2.77E-5 4$OC=4.21E-6 6$PC=2.515E-7 35
148GD2 G %IG AP 0.44
148GD cG A{-2}=-0.21 {I16} (1992KrZN)
148GD L 2188.67 4 2+
148GD E 1.8 AP2.4 AP7.3 AP 4.2 AP
148GDS E EAV=1133 6$CK=0.4860 43$CL=0.0703 6$CM+=0.02182 17
148GD G 915.30 120.36 4
148GD2 G %IG AP 0.3
148GD G 1404.22 4 2.54 6M1+E2 0.0017733
148GDS G KC=0.00147 29$LC=0.00020 4$MC=4.3E-5 8
148GDS G NC=9.9E-6 18$OC=1.53E-6 29$PC=1.04E-7 22$IPC=4.73E-5 28
148GD2 G %IG AP 2.1
148GD cG M |a(K)exp=0.0020 {I5} (1979ShZF,1993KrZW)
148GD cG MR +2.0 {I+10-7} or +0.04 {I+19-14} (1993KrZW)
148GD cG A{-2}=-0.47 {I18} (1993KrZW,1992KrZN)
148GD G 2188.65 7 2.04 7
148GD2 G %IG AP 1.7
148GD cG A{-2}=-0.78 {I21} (1992KrZN)
148GD L 2233.60 4 3-
148GD E 0.6 AP0.9 AP7.7 AP 1.5 AP
148GDS E EAV=1112 6$CK=0.4971 43$CL=0.0719 6$CM+=0.02233 17
148GD cE E$1900 {I+200-140} (1985Ti03)
148GD cE IE |e/|b{++}=3.23 {I88} (1985Ti01)
148GD G 960.09 7 1.28 11M1+E2 0.0040 10 &
148GDS G NC=2.4E-5 5$OC=3.7E-6 9$PC=2.4E-7 7
148GDS G KC=0.0034 9$LC=0.00048 11$MC=0.000103 23
148GD2 G %IG AP 1.1
148GD cG M |a(K)exp=0.0043 {I9} (1979ShZF), 0.0043 {I10} (1993KrZW)
148GD cG MR +0.02 {I+21-14} or +1.3 {I+4-5} (1993KrZW)
148GD cG A{-2}=-0.45 {I13} (1993KrZW,1992KrZN)
148GD G 1449.16 4 1.08 4E1(+M2) +0.09 10 0.0007810
148GDS G KC=0.00053 9$LC=6.8E-5 12$MC=1.47E-5 27
148GDS G NC=3.4E-6 6$OC=5.2E-7 10$PC=3.6E-8 7$IPC=0.000167 5
148GD2 G %IG AP 0.91
148GD cG MR from 1993KrZW,1992KrZN
148GD cG A{-2}=0.17 {I18} (1993KrZW,1992KrZN)
148GD L 2310.97 5 2+
148GD E 0.7 AP1.1 AP7.6 AP 1.8 AP
148GDS E EAV=1078 6$CK=0.5164 43$CL=0.0748 6$CM+=0.02321 17
148GD G 1526.45 7 0.76 3M1+E2 0.0015326
148GDS G KC=0.00123 22$LC=0.000165 28$MC=3.6E-5 6
148GDS G NC=8.2E-6 14$OC=1.28E-6 22$PC=8.7E-8 17$IPC=8.9E-5 5
148GD2 G %IG AP 0.64
148GD cG MR +2.4 {I+22-10} or -0.0 {I2} (1993KrZW,1992KrZN)
148GD cG A{-2}=-0.40 {I25} (1993KrZW,1992KrZN)
148GD G 2311.03 7 1.38 4
148GD2 G %IG AP 1.2
148GD cG A{-2}=-0.43 {I23} (1992KrZN)
148GD L 2424.10 9 3+,4+ F
148GD E 0.3 AP0.5 AP7.9 AP 0.8 AP
148GDS E EAV=1027 6$CK=0.5450 44$CL=0.0790 6$CM+=0.02452 17
148GD G 1007.72 9 0.77 7M1+E2 0.0036 9 &
148GDS G KC=0.0031 8$LC=0.00042 9$MC=9.2E-5 20
148GDS G NC=2.1E-5 5$OC=3.3E-6 8$PC=2.2E-7 6
148GD2 G %IG AP 0.65
148GD cG M |a(K)exp=0.0033 {I8} (1979ShZF,1993KrZW)
148GD cG MR -1.2 {I8} if J|p=3+; +0.6 {I8} if J|p=4+
148GD cG A{-2}=-0.44 {I15} if J|p=3+, -0.46 {I15} if J|p=4+
148GDxcG (1992KrZN,1993KrZW)
148GD G 1639.66 220.50 7
148GD2 G %IG AP 0.42
148GD L 2503.70 5 (1,2,3)-
148GD E 0.7 AP1.4 AP7.4 AP 2.1 AP
148GDS E EAV=991 6$CK=0.5654 43$CL=0.0820 6$CM+=0.02545 17
148GD G 1230.18 5 0.98 4E2,M1 0.0023 5
148GDS G KC=0.0020 4$LC=0.00027 5$MC=5.8E-5 12
148GDS G NC=1.33E-5 27$OC=2.1E-6 4$PC=1.39E-7 33$IPC=9.6E-6 5
148GD2 G %IG AP 0.82
148GD cG M |a(K)exp=0.0022 {I10} (1979ShZF)
148GD G 1719.63 201.73 11
148GD2 G %IG AP 1.5
148GD L 2505.80 4 3-
148GD E 0.8 AP1.8 AP7.3 AP 2.6 AP
148GDS E EAV=990 6$CK=0.5659 43$CL=0.0821 6$CM+=0.02548 17
148GD cE E$1860 {I+170-120} (1985Ti03)
148GD cE $|e/|b{++}=3.43 {I77} (1985Ti01)
148GD G 1089.41 3 2.68 6E1 9.69E-414
148GDS G KC=0.000832 12$LC=0.0001082 15$MC=2.323E-5 33
148GDS G NC=5.33E-6 7$OC=8.27E-7 12$PC=5.60E-8 8
148GD2 G %IG AP 2.3
148GD cG M |a(K)exp=0.0014 {I4} (1979ShZF,1993KrZW)
148GD G 1722.5 3 0.41 11
148GD2 G FL=784.433
148GD2 G %IG AP 0.34
148GD cG E$Differ by 3|s from value calculated as |DE{-levels}
148GD L 2522.03 114+
148GD E 0.13 AP0.87 AP9.2 AP 1.0 AP 1U
148GDS E EAV=985 6$CK=0.7237 26$CL=0.10793 40$CM+=0.03364 14
148GD G 1105.65 110.73 4M1+E2 0.0029 7
148GDS G KC=0.0025 6$LC=0.00034 7$MC=7.4E-5 16
148GDS G NC=1.7E-5 4$OC=2.6E-6 6$PC=1.8E-7 5$IPC=3.89E-7 22
148GD2 G %IG AP 0.61
148GD cG M |a(K)exp=0.0023 {I7} (1979ShZF,1993KrZW)
148GD cG MR -0.18 {I20} or +1.5 {I+10-6} (1993KrZW)
148GD cG A{-2}=-0.30 {I16} (1993KrZW)
148GD G 1248.2 8 0.24 6 A
148GD2 G %IG AP 0.2
148GD G 1737.9 6 0.20 4 A
148GD2 G %IG AP 0.17
148GD L 2614.59 4 2+
148GD E 0.8 AP1.9 AP7.3 AP 2.7 AP
148GDS E EAV=941 6$CK=0.5938 43$CL=0.0862 6$CM+=0.02676 17
148GD G 1342.2 6 0.20 9 A
148GD2 G %IG AP 0.17
148GD G 1830.14 4 2.17 12M1+E2 0.0012015
148GDS G KC=0.00084 12$LC=0.000112 16$MC=2.41E-5 33
148GDS G NC=5.5E-6 8$OC=8.6E-7 12$PC=5.9E-8 9$IPC=0.000223 15
148GD2 G %IG AP 1.8
148GD cG RI from 1985Ti03. 2.49 {I7} (1979ShZF)
148GD cG MR +2.5 {I+14-8}, or -0.03 {I5} (1993KrZW)
148GD cG A{-2}=-0.38 {I18} (1992KrZN,1993KrZW)
148GD G 2614.3 6 0.82 6
148GD2 G %IG AP 0.69
148GD L 2632.81 8 5-
148GD E 0.03 AP0.57 AP10.9 AP 0.60 AP 2U
148GDS E EAV=955 6$CK=0.7892 12$CL=0.12170 24$CM+=0.03813 13
148GD G 1848.36 8 0.69 3
148GD2 G %IG AP 0.58
148GD L 2700.06 7 (1-,2+)
148GD E 0.35 AP0.95 AP7.5 AP 1.3 AP
148GDS E EAV=903 6$CK=0.6155 42$CL=0.0894 6$CM+=0.02776 17
148GD G 1426.49 8 0.33 2
148GD2 G %IG AP 0.28
148GD G 1915.54 190.48 3 M1+E2 +0.8 6 0.0011910
148GDS G KC=0.00078 7$LC=0.000104 9$MC=2.25E-5 20
148GDS G NC=5.2E-6 5$OC=8.1E-7 7$PC=5.6E-8 6$IPC=0.000269 13
148GD2 G %IG AP 0.4
148GD cG A{-2}=-0.88 {I28} (1992KrZN,1993KrZW)
148GD G 2700.57 200.76 3
148GD2 G %IG AP 0.64
148GD L 2872.89 6 (2-,3,4+)
148GD E 0.5 AP1.7 AP7.2 AP 2.1 AP
148GDS E EAV=826 6$CK=0.6585 40$CL=0.0958 6$CM+=0.02975 17
148GD G 960.09 7 1.28 11 & ?
148GD2 G %IG AP 1.1
148GD G 1599.39 6 1.28 4
148GD2 G %IG AP 1.1
148GD G 2089 1 0.52 8
148GD2 G %IG AP 0.44
148GD L 2886.31 10 (2+,3,4+)
148GD E 0.19 AP0.71 AP7.6 AP 0.90 AP
148GDS E EAV=820 6$CK=0.6617 39$CL=0.0963 6$CM+=0.02991 17
148GD G 382.0 8 0.18 9 A
148GD2 G %IG AP 0.15
148GD G 1470.1 8 0.15 6 A
148GD2 G %IG AP 0.13
148GD G 2101.87 100.75 6
148GD2 G %IG AP 0.63
148GD cG RI from 1985Ti03
148GD L 2915.51 8 3-
148GD E 0.4 AP1.6 AP7.2 AP 2.0 AP
148GDS E EAV=806 6$CK=0.6687 39$CL=0.0973 6$CM+=0.03023 17
148GD G 1002.48 9 0.399 24M1,E2 0.0036 9
148GDS G KC=0.0031 8$LC=0.00043 10$MC=9.3E-5 20
148GDS G NC=2.1E-5 5$OC=3.3E-6 8$PC=2.2E-7 6
148GD2 G %IG AP 0.34
148GD cG M |a(K)exp=0.0030 {I14} (1979ShZF,1993KrZW)
148GD cG A{-2}=0.02 {I24} (1992KrZN,1993KrZW)
148GD G 1641.98 210.53 7
148GD2 G %IG AP 0.45
148GD G 2131.14 111.44 5E1+M2 -0.19 7 1.01E-3 3
148GDS G KC=0.000310 35$LC=4.0E-5 5$MC=8.6E-6 10
148GDS G NC=1.97E-6 24$OC=3.1E-7 4$PC=2.12E-8 26$IPC=0.000650 16
148GD2 G %IG AP 1.2
148GD cG A{-2}=-0.18 {I21} (1992KrZN,1993KrZW)
148GD L 3065
148GD dL E$Level energy held fixed In least-squares adjustment
148GD G 1230 0.39 14 A ?
148GD2 G %IG AP 0.33
148GD L 3076.12 24
148GD E 0.08 AP0.42 AP7.8 AP 0.50 AP
148GDS E EAV=735 6$CK=0.7055 35$CL=0.1029 5$CM+=0.03196 16
148GD G 1802.62 240.60 8
148GD2 G %IG AP 0.5
148GD L 3089.65 7 (1-,2+)
148GD E 0.16 AP0.84 AP7.5 AP 1.0 AP
148GDS E EAV=729 6$CK=0.7085 35$CL=0.1033 5$CM+=0.03210 16
148GD G 1007.72 9 0.77 7 &
148GD2 G %IG AP 0.65
148GD G 1816.06 9 0.53 3
148GD2 G %IG AP 0.45
148GD G 3090.5 150.19 6 A
148GD2 G %IG AP 0.16
148GD L 3130.87 16 (1,2+)
148GD E 0.16 AP0.94 AP7.4 AP 1.1 AP
148GDS E EAV=711 6$CK=0.7173 34$CL=0.1047 5$CM+=0.03252 16
148GD G 2345.1 8 0.52 7 A
148GD2 G %IG AP 0.44
148GD G 3130.89 160.82 6
148GD2 G %IG AP 0.69
148GD L 3295.03 15 (1,2+)
148GD E 0.04 AP0.36 AP7.8 AP 0.40 AP
148GDS E EAV=638 6$CK=0.7497 29$CL=0.10962 43$CM+=0.03408 15
148GD G 2510.56 150.36 3
148GD2 G %IG AP 0.3
148GD G 3295.5 100.12 4 A
148GD2 G %IG AP 0.1
148GD L 3574.94 21 (1-,2+)
148GD E 0.03 AP0.47 AP7.5 AP 0.50 AP
148GDS E EAV=515 6$CK=0.7932 20$CL=0.11648 31$CM+=0.03624 13
148GD G 2301.44 210.30 3
148GD2 G %IG AP 0.25
148GD G 3574.6 100.27 4 A
148GD2 G %IG AP 0.23
148GD L 4051.0 6 (2+,3)
148GD E 0.004 AP0.546 AP7.2 AP 0.55 AP
148GDS E EAV=307 6$CK=0.8302 7$CL=0.12327 17$CM+=0.03842 13
148GD G 2634.6 100.16 4 A
148GD2 G %IG AP 0.13
148GD G 2777.5 100.08 AP A
148GD2 G %IG AP 0.067
148GD G 3266.4 100.41 25 A
148GD2 G %IG AP 0.34
148GD L 4068.24 24 (2)
148GD E 0.004 AP0.596 AP7.2 AP 0.60 AP
148GDS E EAV=300 6$CK=0.8308 6$CL=0.12342 17$CM+=0.03846 13
148GD G 2155.33 250.37 6
148GD2 G %IG AP 0.31
148GD cG RI from 1985Ti03
148GD G 2794.6 100.19 4 A
148GD2 G %IG AP 0.16
148GD G 4066.8 100.16 4 A
148GD2 G %IG AP 0.13
148GD L 4542.27 21 2(+),3
148GD E 2E-5 AP0.8 AP6.8 AP 0.8 AP
148GDS E EAV=88 6$CK=0.83397 40$CL=0.12647 20$CM+=0.03954 14
148GD G 3125.4 3 0.31 4
148GD2 G %IG AP 0.26
148GD G 3269.2 3 0.66 5
148GD2 G %IG AP 0.55