146EU    146GD EC DECAY                1981KA07,1978MA47         16NDS    201609
146EU  H TYP=FUL$AUT=Yu. KHAZOV, A. RODIONOV AND G. SHULYAK$
146EU2 H CIT=NDS 136, 163 (2016)$CUT=14-Jul-2016$
146EU c  1981Ka07: {+146}Gd |e decay [from {+144}Sm(|a,2n), E=27 MeV]; measured
146EU2c  E|g, I|g, |g|g, |g(X-ray) coin. Deduced levels, J|p.
146EU3c  Cyclotron, mass-separator, Ge(Li), X-ray detectors.
146EU c  1978Ma47,1973Ga26: {+146}Gd |e decay [from Ta(p,X), E=660 MeV];
146EU2c  measured E|g, I|g, E(ce), Ice, L-subshell ratios. Deduced
146EU3C  levels, J|p, |a, |d. Ge(Li) detector, magnetic |b spectrometer.
146EU c  1976Se02: {+146}Gd |e decay [from {+144}Sm(|a,2n), E=27 MeV]; measured
146EU2c  E|g, I|g, |g|g, |g|g(|q), |g(X-ray) coin, |g(t), T{-1/2}.
146EU3c  Deduced levels, J|p, |d.
146EU c  1970An18: {+146}Gd |e decay; measured E|g, I|g, Ice, K-, L-,
146EU2C  M-subshell ratios. Deduced levels, |a, J|p, |d.
146EU c  2013Bh07: {+146}Gd |e decay [from {+144}Sm(|a,2n), E|a=32 MeV];
146EU2c  measured E|g, I|g, |g|g-coin, level T{-1/2} by |g|g(t).
146EU3c  Deduced levels, J|p, |b feedings, log| {Ift}, configurations.
146EU4c  Measured T{-1/2} by |g|g(t). Mirror symmetric centroid difference
146EU5c  method for half-life.
146EU c  Others: 1958Go86, 1963Fr02, 1963Bo44, 1966Av04, 1970Ag01, 1970Ch09,
146EU2c  1970Ko16, 1972Ho51
146EU c  The {+146}Eu level scheme from {+146}Gd |e decay is that proposed by
146EU2c  1981Ka07 on the basis of |g, |g|g, (X-ray)|g coin. It differs from the
146EU3c  earlier proposed schemes by repositioning in the cascade of coincident
146EU4c  |g rays: the 114.7 keV level decays by the 114.7 keV transition and
146EU5c  the 230.2 keV level decays by 115.5 keV transition. Such a sequence is
146EU6c  supported by the measurements of (p,2n) reactions and {+146}Gd |e
146EU7c  decay (2013Bh07). The analysis of the 2013Bh07 data shows that the
146EU8c  work is done with a poor energy calibration
146EU d  The experimental data of 2013Bh07 do not agree well with the proposed
146EU2d  level scheme: calculation of energy levels using the program GTOL
146EU3d  gives a normalized |h{+2}=12. Energy of the |g-transitions included in
146EU4d  the level scheme are less on 0.63 - 1.11 keV than adopted data. The
146EU5d  sum of energy values of a cascade transitions and a corresponding
146EU6d  crossover transition show poor energy calibration:
146EU7d  114.06+114.88=228.94 (7), but E=229.40 (3) for a crossover transition;
146EU8d  114.88+153.86=268.74 (5), E=268.96 (6) for a crossover transition.
146EU cE TI$Net feeding on the basis of transition intensity balance
146EU2cE calculations at the levels.
146EU cG E,RI$From 1981Ka07, except as noted.
146EU cG M$from |a(K)exp and subshell ratios; |a(K)(154.6|g) of M1 mult.
146EU2cG normalized to 0.455 (2008Ki07)
146EU cL E$From a least-squares fit to E|g data; normalized |h{+2}=0.7
146EU cL J$From 'Adopted Levels, Gammas'.
146EU DG CC$FROM BrIcc v2.3a (10-Sep-2014) 2008Ki07, "Frozen Orbitals" appr.
146EU CG MR$IF NO VALUE GIVEN IT WAS ASSUMED MR=1.00 FOR E2/M1.
146GD  P 0.0         0+                48.27 D   9              1032      7
146GD cP $T{-1/2} from 'Adopted Levels', Q(g.s.) from 2012Wa38.
146EU  N 0.469      71.0       1.0       1.0
146EU cN NR$assuming |S(I(|g+ce) to g.s.)=100
146EU PN                                                                     4
146EU  G  270.1      0.01    LT
146EU cG E$not observed by 1981Ka07. E|g=269.28 {I4}, I|g=0.15 {I6} (1978Ma47).
146EU  G  742        0.02    LT
146EU cG E$not observed by 1981Ka07.
146EU  L 0.0         4-
146EU  L 114.712   203-                3.7 PS    16
146EU cL T$from |b|g(t) using mirror symmetric centroid (MSCD) analysis
146EU2cL (2013Bh07). Others: <0.160 ns (1972Ho51), <0.3 ns (1976Se02).
146EU  G 114.71    2 94.5    10M1+(E2)   0.04    LT    1.247
146EUS G  KC=1.055 15$LC=0.1510 22$MC=0.0326 5
146EUS G  NC=0.00747 11$OC=0.001184 17$PC=0.0001167 17
146EU CG ECC$CEK=204 {I12} (1978Ma47); CEK=102 {I5}, CEL1=13, CEL2=0.95 {I15},
146EU2CG CEL3=0.26 {I8} (1973Ga26);
146EU CG $K:L1:L2:L3:M1:M2:M3+:N:O+=100.0 {I35}:13.6 {I5}:1.00 {I15}:<0.3:2.9
146EU2CG {I4}:0.32 {I16}:<0.2:0.80 {I11}:0.18 {I8} (1970An18)
146EU cG CC$KC:L1C:L2C:L3C:M1C:M2C:M3C+:NC:(OC+PC)=100.0
146EU2cG {I14}:13.05 {I18}:1.025 {I16}:0.1918 {I60}:2.805 {I40}:0.2474
146EU3cG {I40}:0.0472 {I40}:0.707 {I12}:0.1233 {I17} from exp. subshell ratios
146EU cG MR$from 1973Ga26. |d<0.01 (1963Bo44). |d=0.000 {I8} from exp.
146EU2cG subshell ratios
146EU  L 230.23     32-                5.8 PS    15
146EU cL T$from |b|g(t) using mirror symmetric centroid (MSCD) analysis
146EU2cL (2013Bh07). Others: <0.165 ns (1972Ho51), <0.3 ns (1976Se02).
146EU  E                         26.5  16  8.22   3             26.5      16 1U
146EUS E CK=0.8100 4$CL=0.1463 3$CM+=0.04375 11
146EU cE           Note that this value of log| {Ift} is lower than log|
146EU2cE {Ift}>8.5 expected for 1u |b transitions
146EU  G 115.51    2 94.5    10M1+(E2)   0.022   LT    1.223
146EUS G  KC=1.034 15$LC=0.1478 21$MC=0.0319 5
146EUS G  NC=0.00731 11$OC=0.001160 17$PC=0.0001144 16
146EU CG ECC$CEK=208 {I12} (1978Ma47); CEK=104 {I4}, CEL1=13.8 {I4}, CEL2=1.1
146EU2CG {I1}, CEL3=0.18 {I2} (1973Ga26);
146EU cG $K:L1:L2:L3:M1:M2:M3+:N:O+P=102.2
146EU3CG {I35}:13.6 {I4}:1.02 {I15}:0.10 {I6}:3.0 {I4}:0.27 {I14}:<0.1:0.77
146EU4CG {I9}:0.16 {I8} (1970An18)
146EU CG CC$KC:L1C:L2C:L3C:M1C:M2C:M3C+:NC:(OC+PC)=100.0 {I14}:13.03 {I18}:
146EU2CG  1.071 {I22}:0.204 {I17}:2.794 {I40}:0.2406 {I50}:0.0501 {I40}:0.708
146EU3CG {I10}:0.1233 {I17} from exp. subshell ratios
146EU cG MR$from 1973Ga26. |d<0.01 (1963Bo44). |d=0.0000 {I25} from exp.
146EU2cG subshell ratios
146EU  G 230.51    20  0.19  10[E2]                    0.1347
146EUS G  KC=0.0989 14$LC=0.0278 4$MC=0.00632 10
146EUS G  NC=0.001417 21$OC=0.000204 3$PC=8.73E-6 13
146EU cG E$from 1976Se02; not observed by 1981Ka07. E|g=230.2 {I5}, I|g|?0.02
146EU2cG (1978Ma47).
146EU cG RI$from 1976Se02, normalized to 1981Ka07 by the evaluators.
146EU  L 384.80     41-
146EU  E                         72.1  14  7.241 14             72.1      14
146EUS E CK=0.8268 3$CL=0.13383 17$CM+=0.03933 6
146EU  G 154.57    2 100     1 M1(+E2)   0.071   LT    0.537
146EUS G  KC=0.455 7$LC=0.0649 10$MC=0.01402 21
146EUS G  NC=0.00321 5$OC=0.000509 8$PC=5.02E-5 7
146EU cG RI$|DI|g is not specified by the authors of 1981Ka07, the evaluators
146EU2cG assumed |DI|g=1 by analogy with the data for other transitions
146EU CG ECC$CEK=100 (1978Ma47); CEK=50 {I3}, CEL1=6.5 {I5}, CEL2=0.50 {I7},
146EU2CG CEL3=0.085 {I20} (1973Ga26); K:L1:L2:L3:M1:M2:M3+:N:O+^P=50.7
146EU3CG {I30}:6.78 {I20}:0.54 {I9}:<0.1:1.44 {I15}:0.15 {I8}:<0.1:0.42
146EU4CG {I8}:<0.1 (1970An18)
146EU CG CC$KC:L1C:L2C:L3C:M1C:M2C:M3C+:NC:(OC+PC)=100.0 {I14}:13.02
146EU2CG {I18}:1.04 {I30}:0.206 {I30}:2.789 {I40}:0.2444 {I80}:0.0507
146EU3CG {I70}:0.708 {I10}:0.1230 17 from exp. subshell ratios
146EU cG MR$from 1973Ga26. -0.041<|d<-0.018 (1963Bo44). |d=0.08 {I15} from
146EU2cG exp. subshell ratios
146EU  L     421.62 7(3)-
146EU  G 421.6     1 0.174   20M1                      0.0361
146EU2 G CEK=0.016 4$ EKC=0.032 6 (1978Ma47)
146EUS G  KC=0.0307 5$LC=0.00425 6$MC=0.000914 13
146EUS G  NC=0.000209 3$OC=3.33E-5 5$PC=3.34E-6 5
146EU  L     498.16 7(2-)
146EU  E                         0.23  8   9.53  16             0.23      8  1U
146EUS E CK=0.7849 12$CL=0.1647 9$CM+=0.0504 3
146EU  G 76.54     1 0.05     2[M1,E2]                 5.3    13
146EUS G  KC=2.8 6$LC=1.9 15$MC=0.4 4
146EUS G  NC=0.10 8$OC=0.014 10$PC=0.00027 11
146EU  G 267.8     2 0.08     4(M1,E2)                 0.101  18
146EU2 G CEK=0.020 8 (1978Ma47)$ EKC=0.11 6
146EUS G  KC=0.082 19$LC=0.0149 8$MC=0.00330 25
146EUS G  NC=0.00075 5$OC=0.000114 3$PC=8.E-6 3
146EU  G 383.5      10.10     4
146EU  L     690.7120  (2)-
146EU  E                         0.067 10  9.66   7             0.067     10
146EUS E CK=0.8069 10$CL=0.1486 8$CM+=0.0445 3
146EU  G 576.0     2 0.14     2M1                      0.01634
146EU2 G CEK=0.0038 4$ EKC=0.013 4 (1978Ma47)
146EUS G  KC=0.01392 20$LC=0.00190 3$MC=0.000410 6
146EUS G  NC=9.38E-5 14$OC=1.493E-5 21$PC=1.507E-6 22