129I 129TE B- DECAY (69.6 M) 1976MA35 14NDS 201408
129I H TYP=FUL$AUT=JANOS TIMAR AND ZOLTAN ELEKES, BALRAJ SINGH$
129I 2 H CIT=NDS 121, 143 (2014)$CUT=31-May-2014$
129I c 1976Ma35: 105 mg enriched {+128}Te (99.5%) was irradiated at the Pool
129I 2c Type Reactor, Livermore. Measured E|g, I|g, |g|g-coincidences using
129I 3c two Ge(Li) detectors.
129I c Others:
129I c 1974De15: E|g, I|g, |g|g, |g|g(|q) measurements. {+129}Te source
129I 2c produced by (n,|g) reaction in the BR2 reactor at Mol, Belgium.
129I 3c Two Ge(Li) and one NaI(Tl) detectors used for |g-ray measurements.
129I 4c The |g|g(|q) data were obtained using two Ge(Li) detectors
129I c 1973Si14: |g(temp,|q) measurements on oriented
129I 2c nuclei. 20 mg enriched {+128}Te irradiated with neutrons.
129I 3c {+3}He-{+4}He dilution refrigerator was used to perform the nuclear
129I 4c orientation measurements; the temperature of the radioactive source was
129I 5c kept between 14 mK and 50 mK. Two Ge(Li) detected the |g rays at 0 and
129I 6c 90 degrees with respect to the magnetic field.
129I c 1969Di01: 100 mg enriched {+130}Te (99.5%) used in (n,2n) reaction at
129I 2c Livermore 14 MeV neutron generator. 200 mg enriched {+128}Te (99.46%)
129I 3c irradiated at Livermore pool-type reactor. The |g radiation was
129I 4c detected by 6 cm{+3} and 20 cm{+3} Ge(Li) detectors. Coincidence
129I 5c measurements were performed with two NaI(Tl) detectors.
129I c 1968Go34, 1956Gr10: |b and ce measurements
129I c 1964De10: 3 mg of enriched {+129}Te (97%) irradiated with neutrons in
129I 2c the Apsara reactor, and 10 mg of enriched {+128}Te in the DIDO reactor,
129I 3c Harwell. NaI(Tl) used for detecting |g rays and determining relative
129I 4c intensities. Resolution was 8.5% at 662 keV. For |g|g coincidence, two
129I 5c NaI(Tl) were used. Beta spectrum of {+129m}Te isomer was studied with
129I 6c Siegbahn-Slatis spectrometer. Beta spectrum of short-lived activity
129I 7c was studied with 4|p scintillation |b ray spectrometer using plastic
129I 8c phosphors. The |b|g coincidences were measured. The log {Ift} values
129I 9c were deduced.
129I c Other |g-ray measurements: 1968Bu21, 1967Be03, 1965Hu08, 1965Bo12,
129I 2c 1964Ra04, 1963Ra11, 1956Gr10, 1955St94, 1955Ma54, 1955Da37
129I c Other |g|g(|q) measurements: 1969Sa22, 1969Ma33, 1969Ma47, 1967Va37,
129I 2c 1965Gu07, 1964Ka09, 1963Ra11
129I cG RI(A)$From |g|g-coin.
129I cG RI(B)$From I(|g)/I(551.50|g+551.98|g) in |g|g-coin, and
129I 2cG I(551.50|g+551.98|g)=0.064 {i6} in singles.
129I cG RI(C)$1976Ma35 missed the data. Estimated from I(1022|g)/I(1050|g)
129I 2cG in {+129}Te |b{+-} decay (33.6 d).
129I cG M,MR$From low-temperature nuclear orientation |g(temp,|q) (1973Si14),
129I 2cG unless otherwise stated
129I cG CC$For [M1+E2] |g rays with no |d value, |a overlaps M1 and E2
129I cL E$From least-squares fit to E|g data
129I cL J,T$From Adopted Levels unless otherwise stated
129I cL J(A)$Assignment also from |g(temp,|q) data (1973Si14)
129TE P 0.0 3/2+ 69.6 M 3 1502 3
129TE cP QP$From 2012Wa38
129TE cP J,T$From {+129}Te Adopted Levels
129I N 0.077 5 1.0 1.0
129I cN NR$From |S(|g+ce to ground state)=100
129I PN 3
129I L 0.0 7/2+ 1.57E+7 Y 4
129I L 27.80 2 5/2+ 16.8 NS 2
129I cL T$from (|b)(0.0278 ce(L))(t) (1966Sa06). Others (from |b|g(t) or
129I 2cL |g|g(t)): 16.4 ns {I11} (1965Pa04), 14.4 ns 5 (1964Ka09), 14.4 ns {I7}
129I 3cL (1964Jh02), 15.9 ns 13 (1963Go17), 18.6 ns 11 (1962De18)
129I B 89 13 5.82 7
129I S B EAV=546.6 14
129I cB $Measured E|b=1453 {I5} (1956Gr10), 1452 {I10} (1964De10),
129I 2cB 1476 {I4} (1968Go34). Measured I|b=70.5 (1956Gr10)
129I G 27.81 5 212 21M1+E2 -0.053 3 5.07 11
129I cG E$other: 27.78 {I5} (ce data in 1965Be26)
129I cG MR$magnitude from L1/L2/L3=1/0.145 {I12}/0.119 {I13} (1965Be26) and
129I 2cG using BrIccMixing code; sign from |d=-0.045 {I14} (from ratio of lines
129I 3cG in Mossbauer spectrum (1970De37). Others: |a(exp)=4.5 {I5} (1964De10),
129I 4cG 4.8 {I4} (1969Sa22) are in agreement with theoretical value deduced
129I 5cG from |d=-0.053 {I3}. Possible penetration effects are discussed by
129I 6cG 1970Va06; these are expected to be very small in the case of 27.81-keV
129I 7cG transition in {+119}I. Other |d=0.016 {I11} from (460|g)(28|g)(|q)
129I 8cG (1965Gu07)
129I S G LC=4.06 9$MC=0.825 18$ NC=0.165 4$OC=0.0186 4
129I cG RI$no data given in 1976Ma35. Deduced from the ratio I(27|g)/I(209|g+
129I 2cG 251|g+278|g+281|g)=12.6 {i12} in 1969Di01 by the evaluators.
129I L 278.38 3 3/2+ 0.104 NS 12
129I B 0.56 5 7.71 4
129I S B EAV=439.0 14
129I G 250.62 5 4.97 15M1+E2 +0.56 +16-120.0628 16
129I cG $251|g(temp,|q): U{-2}F{-2}=+0.225 {I29} (1973Sa14)
129I cG MR$weighted average of |d=+0.53 {I+16-12} (1974De15,|g|g(|q)) and
129I 2cG +0.60 {I+21-13} (as quoted by 1977Kr13 from |g(temp,|q) data of
129I 3cG 1973Si14). Others: +3.5 {I+20-11} (|g|g(|q),1974De15) is discarded
129I 4cG since it is inconsistent with low-temperature orientation data;
129I 5cG +1.2 {I+38-8} deduced by 1977Kr13 from |g(|q) in (|a,|a') data of
129I 6cG 1973Re08
129I S G KC=0.0534 11$LC=0.0076 5$MC=0.00153 9 $
129I S G NC=0.000308 18$OC=3.49E-5 15
129I G 278.43 5 7.36 22 E2 0.0512
129I cG $278|g+281|g(temp,|q): U{-2}F{-2}=+0.001 {I27} (1973Sa14)
129I S G KC=0.0422 6$LC=0.00723 11$MC=0.001483 21$
129I S G NC=0.000293 5$OC=3.12E-5 5
129I L 487.35 3 5/2+ 11.6 PS 27 A
129I B 9.3 7 6.19 4
129I S B EAV=352.0 14
129I cB $Measured E|b=989 {I20} (1956Gr10), 955, 1010 (1964De10).
129I 2cB Measured I|b=15.4 (1956Gr10)
129I G 208.96 5 2.34 7 M1+E2 -0.18 4 0.0983 15 C
129I cG MR$weighted average of |d=-0.22 {I5} (1974De15) and -0.16 {I4}
129I 2cG (1973Sa14). Other: -0.66 {I+28-13} (1965Gu07, as quoted by 1977Kr13)
129I 3cG is in disagreement
129I cG $209|g(temp,|q): U{-2}F{-2}=+0.507 {I46} (1973Sa14); 1977Kr13 give
129I 2cG |d=-0.16 {I4} from this work
129I cG $(209|g)(251|g)(|q): A{-2}=+0.234 {I12}, A{-4}=+0.011 {I22} (1974De15)
129I cG $(209|g)(278|g)(|q): A{-2}=-0.059 {I11}, A{-4}=+0.018 {I18} (1974De15)
129I S G KC=0.0844 13$LC=0.01110 20$MC=0.00224 4$
129I S G NC=0.000452 8$OC=5.27E-5 9
129I G 459.60 5 100 3 M1+E2 -0.08 +4-5 0.01260
129I S G KC=0.01090 16$LC=0.001369 20$MC=0.000275 4$
129I S G NC=5.57E-5 8$OC=6.56E-6 10
129I cG MR$from |g(temp,|q) data of 1973Sa14. 1977Kr11 evaluation recommended
129I 2cG -0.12 {I4} based on this value and five other |d values deduced from
129I 3cG |g|g(|q) data and one from |g(|q) in (|a,|a'), all of which are in
129I 4cG disagreement with each other. Evaluators prefer the measured value
129I 5cG from 1973Sa14 since only one |g is involved. Value of |d=-0.30 {I8}
129I 6cG from 460|g(|q) in (|a,|a') does not seem reliable due to almost
129I 7cG isotropic distribution, whereas in |g(temp,|q) data of 1973Sa14,
129I 8cG strong anisotropy is observed
129I cG $460|g(temp,|q): U{-2}F{-2}=-0.260 {I6} (1973Sa14)
129I cG $(460|g)(28|g)(|q): A{-2}=-0.033 {I11} (1974Ro32); |d=-0.03 {I+26-17}
129I 2cG deduced by 1977Kr13; value agrees with |d from 1973Sa14
129I dG $(460|g)(28|g)(|q): A{-2}=-0.0148 {I29}, A{-4}=-0.0068 {I43}
129I 2dG (1969Sa22); |d=+0.20 {I8} deduced by 1977Kr13
129I dG $(460|g)(28|g)(|q): A{-2}=+0.056 {I18}, A{-4}=-0.029 {I35} (1969Ma33,
129I 2dG 1969Ma47); |d=+1.8 {I+00-12} deduced by 1977Kr13
129I dG $(460|g)(28|g)(|q): A{-2}=-0.049 {I9}, A{-4}=+0.023 {I10} (1965ArZY);
129I 2dG |d=-0.6 {I+9-6} deduced by 1977Kr13
129I dG $(460|g)(28|g)(|q): A{-2}=-0.160 {I33}, A{-4}=+0.022 {I60} (1965Gu07);
129I dG $(460|g)(28|g)(|q): A{-2}=0.000 {I13} (1964Ka09); |d=+0.40 {I+20-18}
129I 2dG deduced by 1977Kr13
129I G 487.39 5 18.4 6 M1+E2 +0.50 +17-100.0105724
129I cG $487|g(temp,|q): U{-2}F{-2}=+0.544 {I20} (1973Sa14)
129I S G KC=0.00911 22$LC=0.001169 18$MC=0.000235 4$
129I S G NC=4.75E-5 8$OC=5.55E-6 10
129I L 559.62 3 1/2+
129I B 0.252 18 7.64 4
129I S B EAV=322.6 13
129I G 281.26 5 2.14 7 M1+E2 -0.08 4 0.0442 C
129I cG MR$ from 1977Kr13 based on |d=-0.08 {I3} or +2.09 {I14} (|g|g(|q),
129I 2cG 1974De15). Other |d=-0.01 {I4} (1965ArZY), -0.42 {I3} (1965Gu07) as
129I 3cG quoted by 1977Kr13
129I cG $(281|g)(251|g)(|q): A{-2}=+0.238 {I15}, A{-4}=+0.014 {I26} (1974De15)
129I cG $(281|g)(278|g)(|q): A{-2}=-0.048 {I14}, A{-4}=-0.014 {I23} (1974De15)
129I dG $(281|g)(278|g)(|q): A{-2}=+0.039 {I7}, A{-4}=-0.009 {I8} (1965Gu07)
129I dG $(281|g)(278|g)(|q): A{-2}=+0.070 {I9}, A{-4}=+0.032 {I9} (1965ArZY)
129I S G KC=0.0381 6$LC=0.00487 7$MC=0.000980 15$
129I S G NC=0.000199 3$OC=2.33E-5 4
129I G 531.83 5 1.14 4 [E2]
129I S G CC=0.00722 11$KC=0.00614 9$LC=0.000862 12$MC=0.0001745 25$
129I S G NC=3.50E-5 5$OC=3.94E-6 6
129I L 729.57 3 (9/2)+ 3.8 PS 4 A
129I B 0.0007 4 9.9 3 ?
129I cB IB$no |b feeding is expected to this level, apparent small feeding
129I 2cB is likely due to missing weak |g rays
129I S B EAV=255.1 13
129I G 242.2 1 0.00002 1 [E2] 0.0812
129I S G KC=0.0661 10$LC=0.01207 17$MC=0.00248 4$
129I S G NC=0.000490 7$OC=5.13E-5 8
129I cG RI$from I(730|g) and I(242|g)/I(730|g) in 33.6 d decay.
129I cG RI$|DI{-|g} estimated by evaluators in 33.6 d decay.
129I G 701.76 5 0.0006 1 [E2]
129I S G CC=0.00350 5$KC=0.00300 5$LC=0.000399 6$MC=8.05E-5 12$
129I S G NC=1.620E-5 23$OC=1.86E-6 3
129I cG RI$from I(730|g) and I(701|g)/I(730|g).
129I cG RI$|DI{-|g} estimated by evaluators.
129I G 729.57 5 0.016 4 M1+E2 -0.34 6
129I S G CC=0.00402 7$KC=0.00348 6$LC=0.000432 7$MC=8.67E-5 14$
129I S G NC=1.76E-5 3$OC=2.07E-6 4
129I L 768.76 3 (7/2)+ A
129I G 281.38 200.002 LT
129I G 740.96 5 0.486 17M1+E2 -0.27 10
129I S G CC=0.00390 8$KC=0.00338 7$LC=0.000419 8$MC=8.41E-5 15$
129I S G NC=1.70E-5 3$OC=2.01E-6 4
129I G 768.77 5 0.055 6
129I cG RI$from I(768.77|g+769.01|g) and I(769.01|g) from |g|g-coin.
129I 2cG |DI{-|g} estimated by evaluators.
129I L 829.92 3 3/2+,5/2+
129I B 0.213 16 7.18 4
129I S B EAV=216.7 12
129I cB $Measured E|b=690 {I100}, I|b=3.7 (1956Gr10)
129I G 270.37 6 0.060 4 [M1+E2] 0.053 4 C
129I S G KC=0.0443 22$LC=0.0067 14$MC=0.0014 3$
129I S G NC=0.00027 6$OC=3.0E-5 5
129I G 342.54 5 0.11 1 M1+E2 +1.0 8 0.0264 C
129I S G KC=0.0224 6$LC=0.0032 3$MC=0.00065 6$
129I S G NC=0.000130 11$OC=1.47E-5 8
129I cG MR$from 1974De15.
129I G 551.50 5 0.046 5 [M1+E2] BC
129I S G CC=0.0073 8$KC=0.0063 7$LC=0.00082 5$MC=0.000166 9$
129I S G NC=3.34E-5 20$OC=3.9E-6 4
129I G 802.10 5 2.49 8
129I G 829.93 5 0.083 3 C
129I L 844.82 3 (7/2)+
129I G 817.0 2 0.0008 LTM1+E2 +0.46 4
129I S G CC=0.00303 5$KC=0.00262 4$LC=0.000325 5$MC=6.52E-5 10$
129I S G NC=1.322E-5 20$OC=1.556E-6 24
129I L 1047.35 4 3/2+,5/2+
129I B 0.0091 9 7.97 5
129I S B EAV=137.7 12
129I G 560.05 6 0.079 5 C
129I G 769.01 5 0.0093 9 AC
129I G 1019.43 6 0.029 7
129I L 1050.21 3 (7/2)+ A
129I G 1022.43 5 0.009 1 M1+E2 -0.02 2
129I S G CC=0.00188 3$KC=0.001633 23$LC=0.000200 3$MC=4.00E-5 6$
129I S G NC=8.12E-6 12$OC=9.60E-7 14
129I G 1050.21 5 0.009 1 C
129I L 1111.65 3 5/2+ A
129I B 0.88 6 5.77 4
129I cB $Measured E|b=290 {I60} (1956Gr10), 395 (1964De10).
129I 2cB Measured I|b=10.4 (1956Gr10)
129I S B EAV=115.7 11
129I G 281.7 1 0.020 4 AC
129I G 342.88 5 0.640 5 [M1+E2] 0.0264 C
129I cG $(343|g)(460|g)(|q): A{-2}=-0.34 {I6}, A{-4}=+0.03 {I8} (1974De15);
129I 2cG |d=+1.0 {I8} for 3/2 to 5/2 transition
129I S G KC=0.0224 6$LC=0.0032 3$MC=0.00065 7$
129I S G NC=0.000129 12$OC=1.46E-5 8
129I G 382.08 140.008 3 [E2] 0.0188 C
129I S G KC=0.01579 23$LC=0.00242 4$MC=0.000492 7$
129I S G NC=9.81E-5 14$OC=1.077E-5 16
129I G 551.98 5 0.018 3 [E2] BC
129I S G CC=0.00652 10$KC=0.00555 8$LC=0.000774 11$MC=0.0001565 22$
129I S G NC=3.14E-5 5$OC=3.55E-6 5
129I G 624.34 5 1.26 4 M1(+E2) +0.01 5 C
129I cG MR$weighted average (by 1977Kr13) of |d=+0.10 {I26} (1973Sa14),
129I 2cG -0.02 {I6} and +0.06 {I8} (1974De15)
129I cG $624|g(temp,|q): U{-2}F{-2}=-0.4 {I2} (1973Sa14)
129I cG $(624|g)(209|g)(|q): A{-2}=-0.27 {I7}, A{-4}=+0.05 {I9} (1974De15)
129I cG $(624|g)(460|g)(|q): A{-2}=+0.151 {I9}, A{-4}=+0.003 {I12} (1974De15)
129I cG $(624|g)(487|g)(|q): A{-2}=-0.290 {I25}, A{-4}=-0.002 {I36} (1974De15)
129I S G CC=0.00595 16$KC=0.00515 14$LC=0.000641 14$MC=0.000129 3$
129I S G NC=2.60E-5 6$OC=3.07E-6 8
129I G 833.28 5 0.590 18 C
129I G 1083.85 5 6.4 2 M1+E2 +0.56 +24-14
129I cG MR$other: +0.15 {I10} quoted by 1977Kr13 from (1084|g)(28|g)(|q) in
129I 2cG 1965ArZY
129I dG $ A{-2}=-0.019 {I6}, A{-4}=-0.048 {I18} (1965ArZY)
129I S G CC=0.00156 6$KC=0.00136 6$LC=0.000167 6$MC=3.34E-5 12$
129I S G NC=6.76E-6 24$OC=8.0E-7 3
129I G 1111.64 5 2.48 10M1(+E2) +0.06 5
129I S G CC=0.001557 22$KC=0.001351 19$LC=0.0001650 24$MC=3.30E-5 5$
129I S G NC=6.70E-6 10$OC=7.92E-7 12$IPC=5.96E-7 9
129I L 1196.65 13
129I B 0.00066 16 8.5 1
129I S B EAV=87.7 11
129I G 918.29 150.008 2
129I G 1168.8 2 0.0006 LE
129I L 1209.80 10 1/2+
129I B 0.00055 11 8.6 1
129I S B EAV=83.5 11
129I G 722.5 2 0.003 LE C
129I G 931.57 250.0027 12 C
129I G 1181.96 110.0015 6
129I L 1260.66 3 3/2+,5/2+
129I B 0.039 3 6.44 4
129I S B EAV=67.61 99
129I G 210.66 190.017 9 [M1+E2] 0.113 18 C
129I S G KC=0.093 12$LC=0.016 5$MC=0.0032 11$
129I S G NC=0.00063 21$OC=6.8E-5 18
129I G 415.88 140.008 3 C
129I G 491.93 140.015 3 C
129I G 701.10 160.017 4 C
129I G 773.54 170.003 2 C
129I G 982.27 5 0.208 7 C
129I G 1232.82 5 0.097 4
129I G 1260.63 5 0.145 7
129I L 1291.94 4 (3/2+,5/2+)
129I B 0.033 4 6.32 6
129I S B EAV=58.09 97
129I G 462.04 200.003 LT
129I G 732.62 160.017 3 C
129I G 804.60 130.28 3 C
129I G 1013.57 8 0.017 4 C
129I G 1264.16 5 0.106 4
129I G 1291.50 130.0036 5
129I F G FL=0.0
129I cG E$poor fit, level-energy difference=1291.94; quoted uncertainty may
129I 2cG be underestimated