129I 129TE B- DECAY (33.6 D) 1976MA35 14NDS 201408
129I H TYP=FUL$AUT=JANOS TIMAR AND ZOLTAN ELEKES, BALRAJ SINGH$
129I 2 H CIT=NDS 121, 143 (2014)$CUT=31-May-2014$
129I c 1976Ma35: 105 mg enriched {+128}Te (99.5%) was irradiated at the Pool
129I 2c Type Reactor, Livermore. Measured E|g, I|g, |g|g-coincidences using
129I 3c two Ge(Li) detectors.
129I c Others:
129I c 1973Si14: low-temperature nuclear orientation measurements. 20 mg
129I 2c enriched {+128}Te irradiated with neutrons. {+3}He-{+4}He dilution
129I 3c refrigerator was used; the temperature of the radioactive source was
129I 4c kept between 14 mK and 50 mK. Two Ge(Li) detected the G rays at 0 and
129I 5c 90 degrees with respect to the magnetic field.
129I c 1969Di01: 100 mg enriched {+130}Te (99.5%) used in (n,2n) reaction at
129I 2c Livermore 14 MeV neutron generator. 200 mg enriched {+128}Te (99.46%)
129I 3c irradiated at Livermore pool-type reactor. |g radiation was detected
129I 4c by 6 cm{+3} and 20 cm{+3} Ge(Li) detectors. Coincidence measurements
129I 5c were performed with two NaI(Tl) detectors.
129I c 1968Go34, 1956Gr10: |b and ce measurements
129I C 1964De10: 3 mg of enriched {+129}Te (97%) irradiated with neutrons in
129I 2c the Apsara reactor and 10 mg of enriched {+128}Te in the DIDO reactor,
129I 3c Harwell. NaI(Tl) used for detecting |g rays and determining relative
129I 4c intensities. Resolution was 8.5% at 662 keV. For |g|g coincidence, two
129I 5c NaI(Tl) were used. Beta spectrum of {+129m}Te was studied with
129I 6c Siegbahn-Slatis spectrometer. Beta spectrum of short-lived activity
129I 7c was studied with 4|p scintillation |b ray spectrometer using plastic
129I 8c phosphors. |b|g coincidences were measured. The log {Ift} values
129I 9c were deduced
129I c Other |g-ray measurements: 1967Be03, 1965Hu08, 1965Bo12, 1964Ra04,
129I 2c 1963Ra11
129I c Other |g|g(|q) measurements: 1974Ro32, 1965Gu07, 1964Ka09, 1963Ra11
129I CG RI(A)$From I(250|g)/I(278|g) in {+129}Te |b{+-} decay (69.6 min).
129I CG RI(B)$From I(209|g)/I(460|g)/I(487|g) in {+129}Te |b{+-} decay (69.6
129I 2CG min).
129I CG RI(D)$From |g|g-coin.
129I CG M,MR$From Adopted Gammas, mainly based on low-temperature nuclear
129I 2cG orientation measurements by 1973Si14
129I CG CC$For [M1+E2] |g rays with no MR value, CC overlaps M1 and E2
129I cL E$From least-squares fit to E|g data
129I cL J,T$From Adopted Levels
129TE P 105.51 3 11/2- 33.6 D 1 1502 3
129TE cP QP$From 2012Wa38
129TE cP E,J,T$From {+129}Te Adopted Levels
129I N 0.13 0.13 0.36 7 2.778
129I CN NR,NT$from level scheme
129I CN BR$I|b(to g.s.)=32% {I8} is deduced from the measured ratio I|b(to
129I 2CN g.s.)/I|b(to 27 level)=0.58 {I12} (1964De10,1969Di01), I(105.5|g from
129I 3CN {+129}Te(33.6 d))=64% and I|b(to 27 level from {+129}Te(69.6
129I 4CN min))=89%. I|b(to 27 level) reported by 1964De10 was assumed as
129I 5CN |SI|b(to 27 and 278 levels). Uncertainty in I|b(to g.s.)/I|b(to 27
129I 6CN levels) was estimated as 20% by the evaluators.
129I PN 1.0 3
129I L 0.0 7/2+ 1.57E+7 Y 4
129I B 32 8 10.2 1 1U
129I S B EAV=609.0 13
129I CB IB$measured I|b(to g.s.)/I|b(to 27.8 level)=0.576 18 (1964De10), 0.34
129I 2CB (1968Go34) for equilibrium between the isomeric and ground-state
129I 3CB activities of {+129}Te; uncertainty evaluated in 1972Ho55 NDS
129I cB E$measured E|b=1530 {I5} (1956Gr10), 1595 {I10} (1964De10), 1607 7
129I 2cB (1968Go34). All the measured E|b values are inconsistent with the
129I 3cB recommended Q(|b{+-})=1502 {I3}
129I L 27.80 2 5/2+ 16.8 NS 2
129I G 27.81 5 0.58 M1+E2 -0.053 3 5.07 11 3.5 1
129I S G LC=4.06 9$MC=0.825 18$ NC=0.165 4$OC=0.0186 4
129I CG $ce(L)/(|g+ce)=0.663.
129I cG MR$magnitude from L1/L2/L3=1/0.145 {I12}/0.119 {I13} (1965Be26) and
129I 2cG using BrIccMixing code; sign from |d=-0.045 {I14} (from ratio of lines
129I 3cG in Mossbauer spectrum (1970De37)
129I CG E$from level energy difference.
129I cG TI$total I|g+ce feeding the 27.8-keV level
129I CG RI$deduced from TI and CC
129I L 278.38 3 3/2+ 0.104 NS 12
129I G 250.62 5 0.0084 17M1+E2 +0.56 +16-120.0628 16 A
129I S G KC=0.0534 11$LC=0.0076 5$MC=0.00153 9 $
129I S G NC=0.000308 18$OC=3.49E-5 15
129I G 278.43 5 0.0124 25E2 0.0512 A
129I S G KC=0.0422 6$LC=0.00723 11$MC=0.001483 21$
129I S G NC=0.000293 5$OC=3.12E-5 5
129I CG M$from W(|q) (1974De15).
129I L 487.35 3 5/2+ 11.6 PS 27
129I G 208.96 5 0.0006 1 M1+E2 -0.18 4 0.0988 16 B
129I dG $(209|g)(278|g)(|q): A{-2}=-0.104 {I12}, A{-4}=-0.010 {I21} (1965Gu07)
129I S G KC=0.0844 13$LC=0.01110 20$MC=0.00224 4$
129I S G NC=0.000452 8$OC=5.27E-5 9
129I G 459.60 5 0.026 5 M1+E2 -0.08 +4-5 0.01260
129I cG $(460|g)(28|g)(|q): A{-2}=-0.160 {I33}, A{-4}=+0.022 {I60} (1965Gu07)
129I S G KC=0.01090 16$LC=0.001369 20$MC=0.000275 4$
129I S G NC=5.57E-5 8$OC=6.56E-6 10
129I G 487.39 5 0.005 1 M1+E2 +0.50 +17-100.0105724
129I S G KC=0.00911 22$LC=0.001169 18$MC=0.000235 4$
129I S G NC=4.75E-5 8$OC=5.55E-6 10
129I L 695.89 5 11/2+ 4.3 PS 5
129I cL J$assignment from |g(temp,|q) (1973Si14)
129I B 3.0 6 9.35 9
129I S B EAV=309.9 12
129I G 695.88 6 63.9 19 E2
129I L 729.57 3 (9/2)+ 3.8 PS 4
129I B 0.70 14 9.92 9
129I S B EAV=296.4 12
129I G 242.2 1 0.014 2 [E2] 0.0812 DC
129I S G KC=0.0661 10$LC=0.01207 17$MC=0.00248 4$
129I S G NC=0.000490 7$OC=5.13E-5 8
129I G 701.7 3 0.53 2
129I G 729.57 5 14.9 6 M1+E2 -0.34 6
129I S G CC=0.00402 7$KC=0.00348 6$LC=0.000432 7$MC=8.67E-5 14$
129I S G NC=1.76E-5 3$OC=2.07E-6 4
129I L 768.76 3 (7/2)+
129I B 0.028 6 11.7 1 1U
129I S B EAV=296.2 12
129I G 281.38 200.002 LT
129I G 490.34 200.005 LT
129I G 740.96 5 0.58 2 M1+E2 -0.27 10
129I S G CC=0.00390 8$KC=0.00338 7$LC=0.000419 8$MC=8.41E-5 15$
129I S G NC=1.70E-5 3$OC=2.01E-6 4
129I G 768.77 5 0.060 6
129I L 844.82 3 (7/2)+
129I B 0.009 6 11.9 3 1U
129I S B EAV=267.3 12
129I G 76.10 5 0.0068 15[M1+E2] 3.1 15 DC
129I S G KC=2.1 7$LC=0.8 7$MC=0.18 15$
129I S G NC=0.03 3$OC=0.0032 24
129I CG E$from level-energy difference.
129I G 115.30 160.0058 17[M1+E2] 0.8 3 DC
129I S G KC=0.59 17$LC=0.15 10$MC=0.031 20$
129I S G NC=0.006 4$OC=0.0006 4
129I G 357.48 200.003 LE C
129I G 817.04 5 1.94 6 M1+E2 +0.46 4
129I S G CC=0.00303 5$KC=0.00262 4$LC=0.000325 5$MC=6.52E-5 10$
129I S G NC=1.322E-5 20$OC=1.556E-6 24
129I G 844.81 5 0.73 4
129I L 1050.21 3 (7/2)+
129I B 0.037 8 10.6 1 1U
129I S B EAV=191.4 11
129I G 281.44 5 0.011 1 [M1+E2] 0.047 3 C
129I S G KC=0.0394 15$LC=0.0059 11$MC=0.00120 23$
129I S G NC=0.00024 5$OC=2.7E-5 4
129I G 320.64 110.013 2 [M1+E2] 0.0319 7 DC
129I S G KC=0.0271 4$LC=0.0039 5$MC=0.00079 11$
129I S G NC=0.000159 19$OC=1.78E-5 14
129I G 562.82 200.01 LE DC
129I G 771.80 160.0063 7 DC
129I G 1022.43 5 0.37 2 M1(+E2) -0.02 2
129I S G CC=0.00188 3$KC=0.001633 23$LC=0.000200 3$MC=4.00E-5 6$
129I S G NC=8.12E-6 12$OC=9.60E-7 14
129I G 1050.21 5 0.38 3
129I L 1203.61 11(7/2+)
129I B 0.00048 13 11.8 1 1U
129I S B EAV=136.8 11
129I G 716.60 160.005 LE DC
129I G 924.5 200.0013 LT DC
129I G 1176.0 5 0.002 1
129I G 1203.59 110.005 1
129I L 1281.99 4 (7/2+)
129I B 0.0022 5 10.7 1 1U
129I S B EAV=109.5 11
129I G 552.43 5 0.006 2 DC
129I G 794.60 210.012 3 C
129I G 1003.65 9 0.015 3 C
129I G 1254.13 8 0.009 1
129I G 1281.96 110.0046 8
129I L 1401.43 3 (9/2)-
129I B 0.15 3 8.47 9
129I S B EAV=56.68 90
129I G 556.65 5 2.52 8 (E1(+M2)) -0.06 2
129I G 671.84 5 0.53 2 C
129I G 705.52 7 0.11 1 C
129I G 1373.75 9 0.0057 6
129I G 1401.36 6 0.074 2