102MO 102NB B- DECAY (4.3 S) 09NDS 200908
102MO H TYP=FUL$AUT=D. DE FRENNE$CIT=NDS 110, 1745 (2009)$CUT=31-Dec-2008$
102MO c 1976Ah06: assignment by chemical separation of niobium from
102MO2c {+235}U,{+239}Pu,{+249}Cf(n,F); measured E|g, |g|g-coin, T{-1/2}
102MO c 1977SeZK: mass separation of fission fragments; measured
102MO2c |g|g angular correlation
102MO c 1985Me13: source is a mixture of mass-separated {+102}Nb fission
102MO2c fragments from {+235}U(n,F). Measured: PAC for (296|g-400|g) cascade.
102MO3c Deduced: g-factor for 296-keV level
102MO c 1988GiZX: mass-separated samples of niobium fission fragments from
102MO2c {+235}U, {+239}Pu(n,F). Measured: E|g, I|g, |g|g-coin, |g|g(|q).
102MO c Decay scheme very probably incomplete due to the high value for Q=7210
102MO2c keV so all logft values should be treated as lower limits
102MOxc T{-1/2}. Deduced: {+102}Mo levels
102MO CG E,RI From 1988GiZX.
102MO2CG Uncertainties on E|g,I|g have been estimated by the evaluator after
102MO3CG discussion with the authors.
102MO CG $Absolute intensities calculated with the assumption of no
102MO2CG g.s. |b feeding and mult=E2 for 296|g.
102MO CL E$From a least-squares fit to measured gammas
102MO CL J From adopted levels
102NB P 0.0 (4+) 4.3 S 4 7210 40
102MO N 0.98 1.0 1.0
102MO PN 0.98 1.0 5
102MO L 0.0 0+
102MO L 295.92 82+ 125 PS 4
102MO CL T from 1991Li39
102MO4 L G=0.42 7 (1985Me13)
102MO CL G From PAC for (296|g-400|g) cascade
102MO G 296.0 1 81 8 [E2] 0.0253 C
102MO L 697.05 190+
102MO G 401.0 3 1.9 4 C
102MO L 743.03 104+
102MO B 7.6 23 6.44
102MO2 B EAV= 2919 34
102MO G 447.1 1 20 2 C
102MO L 847.48 82+
102MO G 151 1 1.5 3 [E2] 0.272 ?
102MO G 551.6 1 31 4 C
102MO G 847.4 1 19 2 C
102MO L 1244.95 11(3+)
102MO B 9 3 6.21
102MO2 B EAV= 2678 34
102MO G 397.4 2 3.5 7 C
102MO G 501.9 2 2.0 4 C
102MO G 949.0 1 18 2 C
102MO L 1249.10 112+
102MO G 401.7 3 0.2 1 C
102MO G 506.1 2 0.2 1 C
102MO G 552.0 2 0.4 1 C
102MO G 953.2 2 0.8 2 C
102MO G 1249.1 2 0.6 2 C
102MO L 1327.13 236+
102MO B 1.2 3 7.06 ?
102MO2 B EAV= 2639 34
102MO cB LOGFT$ This logft value is far too small for a second forbidden |b
102MO2cB transition (see also general comment)
102MO G 584.1 2 1.2 3 C
102MO L 1397.85 13(4+)
102MO B 6.3 11 6.31
102MO2 B EAV= 2605 34
102MO G 550.1 2 3.0 6 C
102MO G 654.8 2 3.6 7 C
102MO G 1102.4 2 1.5 4 C
102MO L 1616.22 14
102MO G 367.3 2 0.7 2 C
102MO G 873.5 3 0.2 1 C
102MO G 1320.2 2 0.9 3 C
102MO L 1747.08 14
102MO B 1.8 7 6.74
102MO2 B EAV= 2437 34
102MO G 1004.0 2 2.4 5 C
102MO G 1451.1 2 0.9 3 C
102MO L 1869.19 14
102MO B 3.9 7 6.36
102MO2 B EAV= 2378 34
102MO G 624.1 2 0.9 3 C
102MO G 1021.9 2 2.3 5 C
102MO G 1126.1 2 0.7 2 C
102MO L 2480.28 11(3+)
102MO CL J J=3 from |g|g(|q) results of 1988GiZX if J(296)=2 and
102MO2CL |d=-0.5 for 2184|g
102MO B 71 6 4.86
102MO2 B EAV= 2085 34
102MO G 733.1 2 1.5 3 C
102MO G 864.3 2 1.8 4 C
102MO G 1082.6 2 1.8 4 C
102MO G 1231.0 2 1.5 3 C
102MO G 1235.3 2 14 2 C
102MO G 1632.7 2 42 5 C
102MO G 1737.2 2 2.1 5 C
102MO G 2184.3 2 6.3 9 M1+E2 -0.5 C
102MO CG MR from A{-22}=-0.43 and A{-44}=0.0. No uncertainty given by
102MO2CG the authors (1988GiZX). M1+E2 is the most probable multipolarity