100ZR 100Y B- DECAY (732 MS) 1986WO01 ENSDF 202212
100ZR H TYP=UPD$AUT=Balraj Singh and Jun Chen$CIT=ENSDF$CUT=12-Dec-2022$
100ZR H TYP=FUL$AUT=Balraj Singh and Jun Chen$CIT=NDS 172, 1 (2021)$
100ZR2 H CUT=31-Jan-2021$
100ZR c 1986Wo01: measured |g, |g|g, |g|g(|q), ce, |b|g, half-life of {+100}Y
100ZR2c decay. See also 1990Wo01 for discussion of level structure. The
100ZR3c {+100}Y isotope produced by neutron fission of {+235}U followed by mass
100ZR4c separation of A=100 ion-beam at TRISTAN facility of the Brookhaven
100ZR5c National Laboratory. The separated products contained only
100ZR6c the {+100}Rb and {+100}Sr activities. The |b{+-} decay of {+100}Sr
100ZR7c (J|p(g.s.)=0+) to {+100}Y is expected to populate only the low spin
100ZR8c 735-ms isomer (most likely the g.s. of {+100}Y). The presence of
100ZR9c the 0.94-s isomer is estimated as <1% by 1986Wo01
100ZR c 1985Mu07, 1983Mu19: measured E|g, I|g, |g|g-coin, half-life of
100ZR2c {+100}Y decay using online-separator facility OSTIS at the Institut
100ZR3c Laue-Langevin (ILL), Grenoble
100ZR c 1977Kh03, 1978Kh01: measured E|g, I|g, |g|g-coin, ce, (ce)|g-coin, |b,
100ZR2c |b(ce)(t), half-life of {+100}Y decay using the gas-filled separator
100ZR3c JOSEF at Julich
100ZR c The decay scheme from |g and |g|g data of 1986Wo01 represents a
100ZR2c significant improvement over the one suggested by 1985Mu07
100ZR c Other measurements:
100ZR c |g|g(|q): 1978Se03
100ZR c |g|g(|q,H,t): 1980Wo09
100ZR c |g|g(t): 1989Lh01
100ZR c |b: 1985IaZZ, 1984Pa19
100ZR c |b|g: 1984Pa19
100ZR c |b|g(t): 1990Ma01, 1989Oh06, 1989Wo05, 1989Ma47
100ZR d 1990Ma04 and 1990Ma01 have the same citation
100ZR c T{-1/2}({+100}Y isotope): 1986Wa17, 1985IaZZ, 1983Mu19
100ZR d Calculation of |b{+-} strength functions: 1981Al25
100ZR d Calculation of T{-1/2}, and log| {Ift}: 1987Kr02
100ZR cB $1984Pa19 deduced Q(|b{+-}) value from an average of 10 endpoint
100ZR2cB energies determined from 24 |b|g coincidence spectra
100ZR cB IB,LOGFT$All values are considered as approximate since a large
100ZR2cB gap of about 5 MeV between Q(|b{+-}) value and the highest known
100ZR3cB populated level at 4288 allows the possibility of additional levels and
100ZR4cB undetected gamma rays. Quoted values of I|b{+-} are from I(|g+ce)
100ZR5cB intensity balance at each level. All the I|b and log| {Ift} are listed
100ZR6cB as limits, with only five cases with I|b|>10% listed as approximate.
100ZR7cB Values of I|b and log| {ft} as given in Table II of 1986Wo01 are listed
100ZR8cB under comments, as are apparent I|b feedings deduced by the evaluators
100ZR9cB from |g-intensity intensity balances.
100ZR cG $The following |g rays tentatively assigned to {+100}Y decay
100ZR2cG by 1985Mu07 have not been seen by 1986Wo01: 326, 966, 1077, 1262, 1542,
100ZR3cG 1563, 1929, 2010, 2092, 2509 and 2838. All have a reported intensity
100ZR4cG of 0.5 (1985Mu07). These |g rays have been omitted by the evaluators
100ZR cG E,RI$From 1986Wo01, unless otherwise noted.
100ZR cG E(A)$|g reported by 1985Mu07 only. Treated as uncertain by the
100ZRxcG evaluators
100ZR cG E(B)$|g in coincidence with 212.5|g, but no unique assignment possible
100ZR cG E(D)$From curved-crystal spectrometer data (1979Bo26)
100ZR cG E(E)$(617|g)(213|g)(|q) (1986Wo01)
100ZR cG M$From ce data in 1986Wo01, unless otherwise noted.
100ZR cG E(G)$Tentative placement (evaluators) from level energy difference
100ZR cL E$From least-squares fit to E|g values
100ZR cL J$From the Adopted Levels.
100Y P 0.0 (1)- 732 MS 5 9051 14
100Y cP J,T$From {+100}Y Adopted Levels
100Y cP QP$From 2021Wa16
100ZR N 0.73 10 0.73 10 1 1
100ZR cN NR$From I|g(absolute) of 212.5|g measured with respect to I|g(absolute)
100ZR2cN of 31% {I4} (1981DeYV) for 504|g from {+100}Zr |b{+-}. The absolute
100ZR3cN I|g value of 30% {I4} in 2007Ri01 corroborates the measurement by
100ZR4cN 1981DeYV, while 19% {I2} in 1989WaZV seems discrepant. An
100ZR5cN independent normalization, assuming no |b{+-} feeding to the g.s. gives
100ZR6cN I|g normalization=0.64 {I2}. The normalization factor derived from the
100ZR7cN equilibrium spectrum suggests that |b{+-} feeding to the g.s. is <3%.
100ZR8cN The delayed neutron decay is 1.02% {I6}.
100ZR PN 3
100ZR G 1670.8 3 0.83 11 B
100ZR G 1750 1.0 A
100ZR G 2469.6 3 1.45 14 B
100ZR G 2980.8 5 0.42 10
100ZR L 0.0 0+
100ZR B 2 LT 6.9 GT ?
100ZRS B EAV=4168.0 68
100ZR L 212.530 9 2+ 0.55 NS 2
100ZR cL T$|b|g(t) (weighted average of 0.55 ns {I2} (1989Ma47)
100ZR2cL and 0.54 ns {I4} (1989Oh06)). Others: 1989Wo05 cite 0.61 ns {I8}
100ZR3cL from literature, 0.40 ns {I8} from |g|g(t) (1989Lh01)
100ZR cL $From |g|g(|q,H,t), g factor=0.22 {I5} (1980Wo09). Sign of g factor
100ZR2cL is not given by 1980Wo09, but it is likely to be positive
100ZR B 23 AP 5.8 AP
100ZR cB $I|b=20 {I5}, log| {Ift}=5.9 (1986Wo01). I|b=23 {I6} (evaluators)
100ZRS B EAV=4066.0 68
100ZR G 212.531 9 100 6 E2 0.0723 DC
100ZR cG E$other: 212.62 {I7} (1986Wo01)
100ZR L 331.13 5 0+ 5.53 NS 15
100ZR cL T$weighted average of 5.60 ns {I15} (|b|g|g(t), 1990Ma01) and 5.36 ns
100ZR2cL {I23} (|g|g(t), 1989Lh01). Other: 3.37 ns {I30} (|bce(t), 1978Kh01)
100ZR cL J$from (119|g)(213|g)(|q) (1978Se03,1986Wo01)
100ZR B 10 AP 6.1 AP
100ZR cB $I|b=7.7 {I17}, log| {Ift}=6.3 (1986Wo01). I|b=10 {I5} (evaluators)
100ZRS B EAV=4009.1 68
100ZR G 118.59 7 21.1 12 E2 0.597 C
100ZR cG $A{-2}=+0.25 {I12}, A{-4}=+1.09 {I16} for (119|g)(213|g)(|q)
100ZR2cG (1978Se03) is typical of a 0-2-0 cascade.
100ZR G 331.1 E0 16 4
100ZR cG E$from level energy. Transition seen in |bce data
100ZR cG TI$from Branching(118|g)=0.68 {I6} (1986Wo01), deduced from weighted
100ZR2cG average of values from singles mode (|bce data) and in |g|g
100ZR3cG coincidence mode with 2439|g and 2480|g (1986Wo01)
100ZR L 564.486 15 4+ 37 PS 4
100ZR cL T$|b|g|g(t) (1989Oh06)
100ZR B ?
100ZR cB $I|b=0.35 {I10}, log| {Ift}=7.6 (1986Wo01).
100ZR cB IB$apparent feeding of 0.39 {I13} is probably due to missing |g feeding
100ZR2cB from higher levels, as log| {Ift} value of 7.5 is unrealistic for a
100ZR3cB |DJ=(3) |b transition
100ZRS B EAV=3897.0 68
100ZR G 351.960 12 1.73 11 DC
100ZR cG E$other: 352.08 {I8} (1986Wo01)
100ZR L 829.20 6 0+
100ZR cL J$from (617|g)(213|g)(|q) (1986Wo01)
100ZR B 3.4 LT 6.5 GT
100ZR cB $I|b=3.0 {I5}, log| {Ift}=6.6 (1986Wo01). I|b=3.4 {I7} (evaluators)
100ZRS B EAV=3769.9 68
100ZR G 616.67 7 9.4 6 EC
100ZR L 878.58 4 2+
100ZR B 5.2 LT 6.3 GT
100ZR cB $I|b=4.7 {I7}, log| {Ift}=6.4 (1986Wo01). I|b=5.2 {I11} (evaluators)
100ZRS B EAV=3746.2 68
100ZR G 314.3 3 0.09 3 ?
100ZR G 547.37 7 2.8 4 C
100ZR G 665.98 7 10.6 6 (M1+E2) +1.0 3 C
100ZR cG MR$from (666|g)(213|g)(|q) (1986Wo01). Sign(|d) reassigned by the
100ZR2cG evaluators from the angular distribution pattern shown by the authors
100ZR3cG for the 666-213 cascade
100ZR cG M$large |d(Q/D) favors M1+E2 over E1+M2
100ZR G 878.54 8 5.5 4 C
100ZR L 1196.16 4 (2+)
100ZR B 3.1 LT 6.4 GT
100ZR cB $I|b=2.8 {I4}, log| {Ift}=6.5 (1986Wo01). I|b=3.1 {I7} (evaluators)
100ZRS B EAV=3593.6 68
100ZR G 317.8 2 0.20 4 C
100ZR G 631.84 8 1.1 1 C
100ZR G 865.05 8 3.2 2 C
100ZR G 983.59 8 1.7 2 C
100ZR G 1196.08 7 5.0 3 C
100ZR L 1294.85 5 (2-,3)
100ZR B 0.8 LT 7.0 GT
100ZR cB $I|b=0.7 {I2}, log| {Ift}=7.1 (1986Wo01). I|b=0.8 {I3} (evaluators)
100ZRS B EAV=3546.1 68
100ZR G 416.01 11 0.34 4 C
100ZR G 1082.33 8 3.4 3 C
100ZR L 1441.44 7 (1,2+)
100ZR cL $The branching ratios of |g rays are in disagreement with those
100ZR2cL from 2002Lh01 in the decay of {+100}Y |b{+-} decay (0.94 s)
100ZR B 1.5 LT 6.7 GT
100ZR cB $I|b=1.4 {I3}, log| {Ift}=6.8 (1986Wo01). I|b=1.5 {I4} (evaluators)
100ZRS B EAV=3475.6 68
100ZR G 1110.5 3 1.0 3 C
100ZR G 1228.99 8 2.1 2 C
100ZR G 1441.2 3 0.45 9
100ZR L 1807.59 5 (1,2+)
100ZR B 4.1 LT 6.1 GT
100ZR cB $I|b=3.7 {I4}, log| {Ift}=6.2 (1986Wo01). I|b=4.1 {I7} (evaluators)
100ZRS B EAV=3299.5 68
100ZR G 512.60 7 0.24 7 C
100ZR G 611.60 11 0.68 7 C
100ZR G 978.37 12 0.95 9 C
100ZR G 1476.53 14 1.74 18 C
100ZR G 1595.16 17 2.4 3 C
100ZR G 1807.9 2 1.6 3
100ZR L 1938.14 5 (1,2+)
100ZR B 13 AP 5.6 AP
100ZR cB $I|b=10.9 {I8}, log| {Ift}=5.7 (1986Wo01). I|b=13 {I2} (evaluators)
100ZRS B EAV=3236.7 68
100ZR G 496.88 13 1.19 17 C
100ZR G 643.43 12 0.58 8 C
100ZR G 741.99 7 6.0 4 C
100ZR G 1059.51 7 8.7 6 C
100ZR G 1109.1 3 1.0 3 C
100ZR G 1608.0 1.5 A ?
100ZRF G FL=331.13
100ZR G 1725.44 16 0.93 15 C
100ZR G 1937.9 3 0.97 12
100ZR L 2182.92 9 (1,2+)
100ZR B 0.86 LT 6.7 GT
100ZR cB $I|b=0.77 {I9}, log| {Ift}=6.8 (1986Wo01). I|b=0.86 {I15} (evaluators)
100ZRS B EAV=3119.0 68
100ZR G 244.80 8 0.75 6 C
100ZR G 2182.3 5 0.43 11
100ZR L 2692.76 9 (1,2+)
100ZR B 4.9 LT 5.8 GT
100ZR cB $I|b=4.4 {I4}, log| {Ift}=5.9 (1986Wo01). I|b=4.9 {I8} (evaluators)
100ZRS B EAV=2873.6 68
100ZR G 754.54 23 0.39 9
100ZR G 885.18 11 0.99 9 C
100ZR G 1814.9 6 0.29 9
100ZR G 2480.17 17 4.7 4 C
100ZR G 2692.6 4 0.32 9
100ZR L 2727.4 2 (1,2+)
100ZR B 1.4 LT 6.3 GT
100ZR cB $I|b=1.26 {I14}, log| {Ift}=6.5 (1986Wo01). I|b=1.4 {I3} (evaluators)
100ZRS B EAV=2856.9 68
100ZR G 919.3 4 0.19 5
100ZR G 2396.2 3 1.26 14 C
100ZR G 2728.0 5 0.48 12
100ZR L 2770.67 8 (1,2+)
100ZR B 15 AP 5.3 AP
100ZR cB $I|b=13.7 {I9}, log| {Ift}=5.4 (1986Wo01). I|b=15 {I2} (evaluators)
100ZRS B EAV=2836.1 68
100ZR G 832.64 10 0.90 7 C
100ZR G 1329.6 4 0.27 7
100ZR G 1891.8 2 2.3 3 C
100ZR G 2439.39 18 9.1 7 C
100ZR G 2557.8 4 0.56 9 C
100ZR G 2770.4 3 7.8 6
100ZR L 2846.26 7 (1,2+)
100ZR B 14 AP 5.3 AP
100ZR cB $I|b=12.4 {I7}, log| {Ift}=5.4 (1986Wo01). I|b=14 {I2} (evaluators)
100ZRS B EAV=2799.7 68
100ZR G 908.09 12 0.62 7 C
100ZR G 1038.68 12 0.83 15 C
100ZR G 1551.4 2 1.12 13 C
100ZR G 2017.0 3 1.04 10 C
100ZR G 2515.13 14 8.4 5 C
100ZR G 2633.7 3 1.10 14 C
100ZR G 2846.2 2 5.8 4
100ZR L 2932.02 13 (1,2+)
100ZR B 8.4 LT 5.5 GT
100ZR cB $I|b=7.5 {I5}, log| {Ift}=5.6 (1986Wo01). I|b=8.4 {I13} (evaluators)
100ZRS B EAV=2758.5 68
100ZR G 1637.0 3 0.64 10 C
100ZR G 2600.95 18 6.1 4 C
100ZR G 2719.2 3 1.09 13 C
100ZR G 2932.1 3 3.7 3
100ZR L 3069.7 2 (1,2+)
100ZR B 1.6 LT 6.2 GT
100ZR cB $I|b=1.39 {I14}, log| {Ift}=6.3 (1986Wo01). I|b=1.6 {I3} (evaluators)
100ZRS B EAV=2692.2 68
100ZR G 2240.5 2 1.80 16 C
100ZR G 2738.6 5 0.33 10
100ZR L 3571.8 3 (1,2+)
100ZR B 1.6 LT 6.0 GT
100ZR cB $I|b=1.45 {I15}, log| {Ift}=6.1 (1986Wo01). I|b=1.6 {I3} (evaluators)
100ZRS B EAV=2450.6 68
100ZR G 2375.3 10 0.21 11
100ZR G 3359.2 4 1.14 14 C
100ZR G 3571.8 4 0.87 11
100ZR L 3956.6 3 (1,2+)
100ZR B 1.3 LT 5.9 GT
100ZR cB $I|b=0.92 {I11}, log| {Ift}=6.2 (1986Wo01). I|b=1.3 {I2} (evaluators)
100ZRS B EAV=2265.6 68
100ZR G 1185.8 3 0.36 7 G ?
100ZR G 3743.9 5 0.66 11
100ZR G 3956.8 5 0.74 10
100ZR L 4288.4 4 (1,2+)
100ZR B 0.55 LT 6.2 GT
100ZR cB $I|b=0.49 {I8}, log| {Ift}=6.3 (1986Wo01). I|b=0.55 {I12} (evaluators)
100ZRS B EAV=2106.1 68
100ZR G 4075.8 4 0.52 9
100ZR G 4288.1 6 0.23 7
100ZR L 6827+X R
100ZR cL E$x<2224 {I19} from Q(|b{+-}) (for {+100}Y decay - S(n)({+100}Zr),
100ZR2cL where Q(|b{+-})=9051 {I14}, and S(n)=6827 {I13} from 2021Wa16
100ZR B 1.02 6
100ZR cB IB$%|b{+-}n=1.02 {I6} for the decay of the {+100}Y g.s. and the isomer