100AG 100CD EC DECAY (49.1 S) 1989RY02 21NDS 202102
100AG H TYP=FUL$AUT=Balraj Singh and Jun Chen$CIT=NDS 172, 1 (2021)$
100AG2 H CUT=31-Jan-2021$
100AG c 1989Ry02: {+100}Cd source was produced in spallation reaction of
100AG2c 600-MeV protons on |?100 g/cm{+2} molten tin target at the ISOLDE II
100AG3c facility. x and |g rays were detected with Ge(Li) detectors and
100AG4c conversion electrons were detected with a mini-orange spectrometer.
100AG5c Measured E|g, I|g, |g|g-coin, E(ce), I(ce), (x ray)|g-coin, ce-|g-coin.
100AG6c |g(t). Deduced levels, J, |p, parent T{-1/2}, conversion coefficients,
100AG7c |g-ray multipolarities, |e-decay branching ratios, log {Ift}.
100AG8c Comparisons with theoretical calculations. See also 2010Ba51 review
100AG9c article.
100AG d 1988BaZS, 1988BaZA, 1988RyZY, 1988RyZZ, 1987RyZY superseded by 1989Ry02
100AG c Other: 1970Hn03: (T{-1/2} and a few |g rays reported)
100AG d Theoretical |b{++}/|e ratio: 1988Su16
100AG c Total decay energy deposit of 4004 keV {I98} calculated by RADLIST
100AG2c code is in agreement with the expected value of 3943 keV {I5},
100AG3c indicating the completeness of the decay scheme.
100AG cE TI$From I(|g+ce) balance at each level.
100AG cG E,RI$From 1989Ry02. Quoted values of I|g and I(ce) are the original
100AG2cG values in 1989Ry02 divided by a factor of 10.
100AG cG E(B)$Placement suggested by the evaluators on the basis of energy sums
100AG cG M,MR$From ce data in 1989Ry02, adopted in Adopted Gammas. Conversion
100AG2cG coefficients are not explicitly given in 1989Ry02 but plotted in Fig.7
100AG3cG of 198902; quoted values under comments are deduced by evaluators from
100AG4cG I|g and I(ce) values in 1989Ry02.
100AG cL E$From a least-squares fit to E|g data
100AG cL J$From Adopted Levels
100CD P 0.0 0+ 49.1 S 5 3943 5
100CD cP T$From {+100}Cd Adopted Levels, from 1989Ry02
100CD cP QP$From 2017Wa10
100AG N 0.66 3 1.00
100AG cN NR$from |S(I(|g+ce to g.s. and 15-keV level)=100. No |e feeding is
100AG2cN expected to g.s. and 15-keV level. Unplaced intensity is |?0.6%
100AG PN 3
100AG G 164.3 4 0.09 3
100AG2 G %IG=0.059 20
100AG G 525.5 3 0.61 7
100AG2 G %IG=0.40 5
100AG G 707.5 5 0.10 3
100AG2 G %IG=0.066 20
100AG G 974.3 5 0.14 4
100AG2 G %IG=0.09 3
100AG L 0.0 (5)+
100AG L 15.51 17 (2)+
100AG L 124.70 10 (4)+
100AG G 124.70 10 5.6 4 M1(+E2) 0.1 LT 0.228 C
100AG2 G %IG=3.7 3
100AGS G KC=0.198 4$LC=0.0247 6$MC=0.00471 11
100AGS G NC=0.000814 18$OC=3.72E-5 6
100AG cG M$|a(K)exp=0.18 {I2}
100AG cG $Ice(K)=1.0 {I1}
100AG L 155.22 18 (1,2,3)+
100AG E 0.82 LT 0.18 LT 5.9 GT 1.0 LT ?
100AG cE TI$no direct |b{++}+|e feeding is expected from 0+ parent state to
100AG2cE 155-keV state for J=2 and 3. Apparent weak feeding is possibly due
100AG3cE to weak unobserved |g transitions from higher levels
100AGS E EAV=1248.6 24$CK=0.1524 7$CL=0.01912 9$CM+=0.004724 22
100AG G 139.71 10 10.2 6 M1(+E2) 0.3 LT 0.177 12 C
100AG2 G %IG=6.7 5
100AGS G KC=0.152 9$LC=0.0199 22$MC=0.0038 5
100AGS G NC=0.00065 7$OC=2.81E-5 12
100AG cG M$|a(K)exp=0.14 {I2}
100AG cG $Ice(K)=1.4 {I2}
100AG L 236.15 17 (3)+
100AG E 0.7 3 0.2 1 5.93 20 0.9 4 ?
100AGS E EAV=1210.9 24$CK=0.1640 8$CL=0.02059 10$CM+=0.005086 24
100AG cE TI$no direct |b{++}+|e feeding is expected from 0+ parent state to
100AG2cE 236, (3)+ state. Apparent weak feeding is possibly due to weak
100AG3cE unobserved |g transitions from higher levels
100AG G 111.4 2 0.32 4 M1(+E2) 0.5 LT 0.38 7
100AG2 G %IG=0.21 3
100AGS G KC=0.32 5$LC=0.048 15$MC=0.009 3
100AGS G NC=0.0015 5$OC=5.7E-5 7
100AG cG M$|a(K)exp=0.23 {I11}
100AG cG $Ice(K)=0.074 {I32}
100AG G 220.65 10 5.5 4 M1(+E2) 0.8 LT 0.056 8 C
100AG2 G %IG=3.6 3
100AGS G KC=0.048 7$LC=0.0064 13$MC=0.00122 25
100AGS G NC=0.00021 4$OC=8.7E-6 8
100AG cG M$|a(K)exp=0.047 {I8}
100AG cG $Ice(K)=0.26 {I4}
100AG L 303.64 14 (3)+
100AG E 0.7 5 0.2 1 5.9 3 0.9 6 ?
100AG cE TI$no direct |b{++}+|e feeding is expected from 0+ parent state to
100AG2cE 304, (3)+ state. Apparent weak feeding is possibly due to weak
100AG3cE unobserved |g transitions from higher levels
100AGS E EAV=1179.5 24$CK=0.1745 9$CL=0.02191 11$CM+=0.00541 3
100AG G 148.5 3 0.21 4 [M1,E2] 0.25 11
100AG2 G %IG=0.14 3
100AGS G KC=0.20 9$LC=0.035 20$MC=0.007 4
100AGS G NC=0.0011 7$OC=3.3E-5 11
100AG G 178.95 10 7.0 5 M1(+E2) 0.4 LT 0.091 7 C
100AG2 G %IG=4.6 4
100AGS G KC=0.079 6$LC=0.0101 12$MC=0.00194 23
100AGS G NC=0.00033 4$OC=1.45E-5 8
100AG cG M$|a(K)exp=0.076 {I9}
100AG cG $Ice(K)=0.53 {I5}
100AG G 288.13 15 3.2 3 M1(+E2) 1.1 LT 0.027 4 C
100AG2 G %IG=2.11 22
100AGS G KC=0.023 3$LC=0.0030 5$MC=0.00058 10
100AGS G NC=9.9E-5 16$OC=4.2E-6 4
100AG cG M$|a(K)exp=0.023 {I3}
100AG cG $Ice(K)=0.073 {I8}
100AG L 583.38 18 (1,2,3)+
100AG E 0.5 LT 0.2 LT 5.8 GT 0.7 LT ?
100AG cE TI$no direct |b{++}+|e feeding is expected from 0+ parent state to
100AG2cE 583-keV state for J=2 and 3. Apparent weak feeding is possibly due
100AG3cE to weak unobserved |g transitions from higher levels
100AGS E EAV=1049.8 24$CK=0.2275 11$CL=0.02859 14$CM+=0.00706 4
100AG G 347.23 15 3.2 3 M1,E2 0.0171 22 C
100AG2 G %IG=2.11 22
100AGS G KC=0.0148 18$LC=0.0019 4$MC=0.00037 7
100AGS G NC=6.3E-5 11$OC=2.62E-6 20
100AG cG M$|a(K)exp=0.017 {I2}
100AG cG $Ice(K)=0.054 {I5}
100AG G 428.20 15 6.9 5 M1(+E2) 1.3 LT 0.0092 4 C
100AG2 G %IG=4.6 4
100AGS G KC=0.0080 3$LC=0.00099 7$MC=0.000189 14
100AGS G NC=3.25E-5 22$OC=1.46E-6 3
100AG cG M$|a(K)exp=0.0074 {I8}
100AG cG $Ice(K)=0.051 {I4}
100AG G 567.90 15 7.9 5 M1,E2 0.004458 C
100AG2 G %IG=5.2 4
100AGS G KC=0.00387 8$LC=0.000473 12$MC=8.99E-5 23
100AGS G NC=1.55E-5 4$OC=7.0E-7 3
100AG cG M$|a(K)exp=0.0043 {I6}
100AG cG $Ice(K)=0.034 {I4}
100AG L 886.03 19 (1,2,3)+
100AG E 0.71 LT 0.39 LT 5.4 GT 1.1 LT ?
100AG cE TI$no direct |b{++}+|e feeding is expected from 0+ parent state to
100AG2cE 886-keV state for J=2 and 3. Apparent weak feeding is possibly due
100AG3cE to weak unobserved |g transitions from higher levels
100AGS E EAV=910.6 23$CK=0.3060 16$CL=0.03850 20$CM+=0.00951 5
100AG G 302.8 3 0.17 6 [M1,E2] 0.026 5
100AG2 G %IG=0.11 4
100AGS G KC=0.022 4$LC=0.0029 8$MC=0.00056 14
100AGS G NC=9.6E-5 23$OC=3.9E-6 5
100AG G 582.5 3 9.5 6 M1,E2 0.004179 C
100AG2 G %IG=6.3 5
100AGS G KC=0.00363 9$LC=0.000442 9$MC=8.40E-5 18
100AGS G NC=1.449E-5 25$OC=6.6E-7 3
100AG cG M$|a(K)exp=0.0037 {I13}
100AG cG $Ice(K)=0.035 {I12}
100AG G 650.0 3 1.03 10
100AG2 G %IG=0.68 8
100AG G 730.77 25 2.6 2 C
100AG2 G %IG=1.72 15
100AG G 870.4 3 0.85 8
100AG2 G %IG=0.56 6
100AG L 952.05 19 1+
100AG E 43 3 26 2 3.56 4 69 5
100AGS E EAV=880.4 23$CK=0.3265 17$CL=0.04110 21$CM+=0.01016 5
100AG G 368.70 15 7.0 5 M1,E2 0.0144 16 C
100AG2 G %IG=4.6 4
100AGS G KC=0.0124 12$LC=0.0016 3$MC=0.00031 5
100AGS G NC=5.2E-5 8$OC=2.22E-6 13
100AG cG M$|a(K)exp=0.014 {I2}
100AG cG $Ice(K)=0.097 {I11}
100AG G 796.6 4 0.11 3
100AG2 G %IG=0.073 20
100AG G 936.55 15 100 6 C
100AG2 G %IG=66.0 15
100AG L 1039.45 21 (1,2)-
100AG E 0.2 LT 0.1 LT 5.9 GT 0.3 LT ?
100AGS E EAV=840.6 23$CK=0.3558 18$CL=0.04481 23$CM+=0.01107 6
100AG G 1024.1 3 1.5 2 C
100AG2 G %IG=0.99 14
100AG L 1156.39 20 1+
100AG E 1.2 1 1.1 1 4.89 4 2.3 2
100AGS E EAV=787.4 23$CK=0.3986 20$CL=0.05023 25$CM+=0.01242 6
100AG G 117.0 2 0.14 3 [E1] 0.1020
100AG2 G %IG=0.092 21
100AGS G KC=0.0888 14$LC=0.01078 16$MC=0.00203 3
100AGS G NC=0.000346 6$OC=1.421E-5 21
100AG G 270.37 15 0.39 3 M1,E2 0.036 8
100AG2 G %IG=0.257 23
100AGS G KC=0.031 7$LC=0.0042 13$MC=0.00081 25
100AGS G NC=0.00014 4$OC=5.4E-6 8
100AG cG M$|a(K)exp=0.023 {I11}
100AG cG $Ice(K)=0.009 {I4}
100AG G 573.1 4 0.39 8
100AG2 G %IG=0.26 6
100AG G 852.0 4 0.15 4 B ?
100AG2 G %IG=0.10 3
100AG G 1140.79 20 2.5 2
100AG2 G %IG=1.65 15
100AG L 1212.69 20 1+
100AG E 1.9 2 1.8 1 4.64 4 3.7 3
100AGS E EAV=761.8 23$CK=0.4207 20$CL=0.0530 3$CM+=0.01311 7
100AG G 173.2 2 0.76 6 E1 0.0334
100AG2 G %IG=0.50 5
100AGS G KC=0.0291 5$LC=0.00348 5$MC=0.000657 10
100AGS G NC=0.0001124 17$OC=4.83E-6 7
100AG cG M$|a(K)exp=0.030 {I7} gives |d<0.13
100AG cG $Ice(K)=0.023 {I5}
100AG G 629.4 3 0.75 7
100AG2 G %IG=0.50 5
100AG G 909.2 4 0.34 6
100AG2 G %IG=0.22 4
100AG G 1057.5 3 1.5 2
100AG2 G %IG=0.99 14
100AG G 1197.12 20 2.9 2
100AG2 G %IG=1.91 15
100AG L 1393.15 19 1+
100AG E 6.7 6 9.1 8 3.88 4 15.8 14
100AGS E EAV=680.3 23$CK=0.4969 23$CL=0.0627 3$CM+=0.01550 7
100AG G 441.10 15 1.15 11M1,E2 0.0087 5
100AG2 G %IG=0.76 8
100AGS G KC=0.0075 4$LC=0.00095 9$MC=0.000180 18
100AGS G NC=3.1E-5 3$OC=1.355E-6 25
100AG cG M$|a(K)exp=0.0078 {I12}
100AG cG $Ice(K)=0.009 {I1}
100AG G 507.25 25 8.4 16M1,E2 0.0059712
100AG2 G %IG=5.5 11
100AGS G KC=0.00519 9$LC=0.00064 4$MC=0.000122 7
100AGS G NC=2.10E-5 10$OC=9.36E-7 22
100AG cG M$|a(K)exp=0.0042 {I14}
100AG cG $Ice(K)=0.035 {I10}
100AG G 809.83 20 7.1 5 C
100AG2 G %IG=4.7 4
100AG G 1156.8 5 0.30 7
100AG2 G %IG=0.20 5
100AG G 1377.52 20 7.1 5
100AG2 G %IG=4.7 4
100AG L 1574.30 22 1+
100AG E 1.8 2 3.7 3 4.21 4 5.5 5
100AGS E EAV=599.1 23$CK=0.5793 23$CL=0.0732 3$CM+=0.01810 8
100AG G 361.4 3 0.33 11
100AG2 G %IG=0.22 8
100AG G 535.0 3 0.31 5
100AG2 G %IG=0.20 4
100AG G 688.3 3 5.3 5 C
100AG2 G %IG=3.5 4
100AG G 990.9 3 2.1 2 C
100AG2 G %IG=1.39 15
100AG G 1338.2 4 0.29 10
100AG2 G %IG=0.19 7
100AG L 1892.95 25 1+
100AG E 0.32 3 1.6 2 4.45 5 1.9 2
100AGS E EAV=457.7 22$CK=0.7194 20$CL=0.0912 3$CM+=0.02255 7
100AG G 500.0 5 0.13 4
100AG2 G %IG=0.09 3
100AG G 680.6 4 0.32 10
100AG2 G %IG=0.21 7
100AG G 940.9 3 1.7 3
100AG2 G %IG=1.12 21
100AG G 1309.3 3 0.71 5
100AG2 G %IG=0.47 4
100AG L 1960.2 3 1+
100AG E 0.076 8 0.47 5 4.94 5 0.55 6
100AGS E EAV=428.1 22$CK=0.7448 19$CL=0.09446 24$CM+=0.02337 6
100AG G 1074.2 5 0.14 5
100AG2 G %IG=0.09 4
100AG G 1944.7 3 0.70 5
100AG2 G %IG=0.46 4