ADOPTED LEVELS, GAMMAS for 86Ge

Authors: A. Negret and B. Singh |  Citation: Nucl. Data Sheets 203, 283 (2025) |  Cutoff date: 20-Jan-2025 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=956×101 keV 44S(n)= 435×101 keV 44S(p)= 1694×101 keV 44Q(α)= -951×101 keV 44
Reference: 2021WA16

References:
  A  86Ga β- decay (51 MS)  B  87Ga β-n decay (27 MS)
  C  1H(87As,2pγ) 

General Comments:

1994Be24: 86Ge produced and identified in Pb(238U,F) reaction at E=750 MeV/nucleon at the SIS synchrotron, GSI. Identification using the Bρ-ΔE-tof method and FRS separator

2013Ma22: proton beam was provided by the Oak Ridge Isochronous Cyclotron (ORIC) at the HRIBF-ORNL facility. Target=238UCx. Fission fragments were ionized to charge state +1 then purified using H2S gas, a mass pre-separator and electromagnetic separation. The purified beams were then sent to the Low-energy Radioactive Ion Beam Spectroscopy Station (LeRIBSS) and implanted in a moving tape collector (MTC). Measured Eγ, Iγ, Eβ, βγ-coin, half-life of 86Ge g.s. using two plastic scintillation counters and four HPGe detectors. Comparison with the gross theory of β decay, the finite-range droplet model and the continuum quasiparticle random-phase approximation.

2014XuZZ (thesis): 86Ge produced in 9Be(238U,F), E=345 MeV/nucleon, and separated using BigRIPS and ZeroDegree spectrometers at RIBF-RIKEN facility, followed by β and γ counting using EURICA array for γ rays. Measured half-life of decay of 86Ge by (86Ge implants)β-correlated events, and by β(215.5γ)-coin decay curve. According to Fig. 3.7 showing a plot of yields of different isotopes, a large number of events were assigned to 86Ge.

Mass measurement: 2006Ha62

Theoretical structure calculations:

2022Su20: calculated potential energy surfaces in (β,γ) plane, isoscalar giant monopole, quadrupole, hexadecupole resonance structures, transition densities, single neutron levels, with evidence for monopole-quadrupole-hexadecupole coupling. Quasiparticle finite amplitude method (QFAM) based on the covariant density functional (CDFT) theory DD-ME2 and a separable pairing force.

2020Ab05: calculated potential energy surface (PES) in (β2,γ) plane, S(2n), neutron-, proton-, and charge-radii, β and γ deformations, shape coexistence using the relativistic Hartree-Bogoliubov formalism with density-dependent zero- and finite-range and DD-PC1 interactions.

2017No04: calculated mean-field potential energy surfaces in (β,γ) plane using the Gogny-D1M EDF, and the IBM, level energies and B(E2) of low-lying 0+, 2+ and 4+ states, fraction of intruder configuration in 0+ states, spectroscopic quadrupole moments of 2+ states, ρ2(E0) using Interacting boson model (IBM) with self-consistent mean-field calculation based on the Gogny-D1M energy density functional, with mean-field energy surface from constrained Hartree-Fock-Bogoliubov (HFB) method.

2013Si25: calculated levels, Jπ, yrast and excited bands, intrinsic and spectroscopic quadrupole moments, B(E2), deformation parameters β and γ, potential energy surface contours in (β,γ) plane using algebraic pseudo-SU(3) model, and shell model.

Other theory references: seven references for structure retrieved from the NSR database are listed under ’document records’ in this dataset.

Q-value: S(2n)=7390 440, S(2p)=32150 590 (syst), Q(β-n)=5720 440 (2021Wa16).









E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)Final Levels
     0ABC 0+ 221.6 ms 11 
% β- = 100
% β-n = 24.5 12
    
   527.30 44 ABC (2+)      527.30 44 
  100
     0
0+
  1024.3 10 ?A       1024.3 10 
  100
     0
0+
  1046 15   C (2+)      510 19 
  1057 22 
 
 
   527.30
     0
(2+)
0+
  1313.4 7  BC (4+)      786.1 5 
  100
   527.30
(2+)
  1430 17 ?  C (3+)      380 8 ?
  100
  1046
(2+)
  1911 23   C (4+)      865 18 
  100
  1046
(2+)
  2500 30   C (6+)     1180 26 
  100
  1313.4
(4+)

E(level): From least-squares fit to Eγ data

Jπ(level): As proposed in 2017Le08 based on systematics of even-even nuclei, as well as comparison with shell-model and symmetry-conserving configuration mixing (SCCM) calculations

E(γ): From 1H(87As,2pγ), unless mentioned otherwise.

Back to top

Band Transitions:

E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)Final Levels
Band 1 - g.s. band
     0 0+ 221.6 ms 11 
% β- = 100
% β-n = 24.5 12
    
   527.30 44  (2+)      527.30 44 
  100
     0
0+
  1313.4 7  (4+)      786.1 5 
  100
   527.30
(2+)
  2500 30  (6+)     1180 26 
  100
  1313.4
(4+)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)Final Levels
Band 2 - γ band
  1046 15  (2+)       
  1430 17  (3+)      380 8 ?
  100
  1046
(2+)
  1911 23  (4+)      865 18 
  100
  1046
(2+)

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
     00+ 221.6 ms 11 
% β- = 100
% β-n = 24.5 12
E(level): g.s. band.
   527.30(2+)   E(level): g.s. band.
  1046(2+)   E(level): γ band.
  1313.4(4+)   E(level): g.s. band.
  1430(3+)   E(level): γ band.
  1911(4+)   E(level): γ band.
  2500(6+)   E(level): g.s. band.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
   527.30   527.30E(γ): From 86Ga β- decay (2023Yo04). Other: 534 8 (2017Le08)
  1024.3  1024.3E(γ): From 86Ga β- decay (2023Yo04).
  1313.4   786.1E(γ): From 87Ga β-n decay (2023Yo04). Other: 791 23 (2017Le08).

Back to top