ADOPTED LEVELS, GAMMAS for 208At

Author: M. J. Martin |  Citation: Nucl. Data Sheets 108,1583 (2007) |  Cutoff date: 1-Jun-2007 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-2814 keV 15S(n)= 7314 keV 16S(p)= 2613 keV 12Q(α)= 5751.0 keV 22
Reference: 2012WA38

References:
  A  212Fr α decay  B  208Rn ε decay
  C  209Bi(α,5nγ) 

General Comments:

Gammas: γ data with uncertainties are from 208Rn ε decay, except where from 212Fr α decay as noted. Eγ and Iγ data without uncertainties are from 209Bi(α,5nγ) as are the multipolarity data for these transitions

Q-value: Note: Current evaluation has used the following Q record










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
     0.0ABC 6+ 1.63 h 3 
% ε = 99.45 6
% α = 0.55 6
     
    23.527 20 AB  (5)+       23.53 2 
 
M1(+E2)
     0.0
6+
    63.695 22 AB  (4)+       40.17 1 
 
M1(+E2)
    23.527
(5)+
    71.83 16 A C 7+       71.9 2 
 
M1
     0.0
6+
   113.784 24 AB  (3)+       50.09 1 
 
M1(+E2)
    63.695
(4)+
   147.95 7 A   5+       84.1 5 
   124.5 1 
   147.9 1 
    76 24 
   100 10 
     5 1 
[M1]
M1
(M1+E2)
    63.695
    23.527
     0.0
(4)+
(5)+
6+
   173.75 3  B  (2)+       59.96 1 
 
M1(+E2)
   113.784
(3)+
   208.12 4 AB  (4,5)+      144.44 3 
   184.56 5 
   100
    75 11 
M1(+E2)
M1(+E2)
    63.695
    23.527
(4)+
(5)+
   227.16 7 A   (4+,5,6+)      163.5 2 
   203.7 1 
   227.2 1 
     6 2 
    51 4 
   100 3 



    63.695
    23.527
     0.0
(4)+
(5)+
6+
   237.22 4 AB  (4)+      123.42 3 
   173.50 6 
   213.61 10 
    49 7 
   100 10 
    53 6 
M1+E2
M1(+E2)
M1+E2
   113.784
    63.695
    23.527
(3)+
(4)+
(5)+
   283.62 7 A   (4+,5+)      169.9 2 
   219.9 1 
   260.1 1 
   283.2 5 
    99 9 
    53 6 
   100 5 
     2 1 




   113.784
    63.695
    23.527
     0.0
(3)+
(4)+
(5)+
6+
   334.71 7 A   (4+,5,6+)      271.0 2 
   311.2 1 
   334.7 1 
    35 4 
    31 3 
   100 6 



    63.695
    23.527
     0.0
(4)+
(5)+
6+
   424.83 4  B  (3)+      187.52 5 
   251.05 4 
     5.1 8 
   100.0 24 
M1(+E2)
M1(+E2)
   237.22
   173.75
(4)+
(2)+
   429.47 13 A        202.3 8 
   281.6 2 
   357.7 2 
   405.8 2 
    28 20 
   100 13 
    65 14 
    77 14 




   227.16
   147.95
    71.83
    23.527
(4+,5,6+)
5+
7+
(5)+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   588.36 10 A   (4+,5,6+)      304.7 2 
   361.30 10 
   440.6 7 
   524.2 3 
   587.9 3 
    40 18 
   100 14 
    24 8 
    75 17 
    53 13 

M1(+E2)



   283.62
   227.16
   147.95
    63.695
     0.0
(4+,5+)
(4+,5,6+)
5+
(4)+
6+
   600.53 3  B  (2,3)+      426.78 2 
   486.79 3 
   100 3 
    22.1 10 
M1(+E2)
M1+E2
   173.75
   113.784
(2)+
(3)+
   681.7 5 A        681.7 5 
 

     0.0
6+
   734.20 3  B  (2,3)+      560.42 2 
   620.47 3 
   100 4 
    99 6 
(M1+E2)
M1+E2
   173.75
   113.784
(2)+
(3)+
   788.4  C 8+      716.7
   788.2
    19
   100
M1
E2
    71.83
     0.0
7+
6+
   853.41 5 ? B  (2,3,4)+      739.62 4 
   100
M1(+E2)
   113.784
(3)+
   904.0  C 9+      115.7
   832.2
     0.9
   100
[M1]
E2
   788.4
    71.83
8+
7+
   904.47 5  B       169.7 5 
   479.65 2 
   731.7 10 
     5.8 15 
   100 3 
     7.1 13 
[M1]
M1+E2

   734.20
   424.83
   173.75
(2,3)+
(3)+
(2)+
  1090.5  C 10- 47.8 ns 10     186.5
  1018.5
   100
    ≈0.7
E1

   904.0
    71.83
9+
7+
  1255.7  C 10+      351.9
   467.1
     9.9
   100
(M1)
E2
   904.0
   788.4
9+
8+
  1299.9  C 11+       44.5
   396.0
     3.6
   100
M1(+E2)
E2
  1255.7
   904.0
10+
9+
  1376.1  C 12+       76.2
 
M1
  1299.9
11+
  1525.5  C (13)+      149.4
   226.0
   100
   ≤28
M1
(E2)
  1376.1
  1299.9
12+
11+
  1539.83 5  B       805.24 3 ?
   939.30 3 
    94 4 
   100 3 
(E2)
M1+E2
   734.20
   600.53
(2,3)+
(2,3)+
  1544.7  C 11-      454.2
 
M1
  1090.5
10-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  1648.7  C 12-      104.2
   558.2
    ≤1.4
  ≈100
(M1)
E2
  1544.7
  1090.5
11-
10-
  1804.2  C 13+      278.7
 
M1
  1525.5
(13)+
  1826.61 5  B      1226.08 4 
   100
E1(+M2)
   600.53
(2,3)+
  1979.48 6 ? B      1125.1 20 
  1378.95 5 
     7.5 14 
   100 5 

E1(+M2)
   853.41
   600.53
(2,3,4)+
(2,3)+
  2194.2  C      545.6
 

  1648.7
12-
  2226.7  C      577.8
   701.3
  ≤100
    20


  1648.7
  1525.5
12-
(13)+
  2268.8  C 13-       42.1
   620.1
 
 
D
M1+E2
  2226.7
  1648.7

12-
  2270.15 5  B      1365.69 7 
  1669.86 7 
  1845.30 6 
    79 3 
    21 3 
   100 4 
E2(+M1)


   904.47
   600.53
   424.83

(2,3)+
(3)+
  2276.4  C 16- 1.5 µs 2     472.2
   750.9
    81
   100
E3
E3
  1804.2
  1525.5
13+
(13)+
  2371.8  C      567.5
 

  1804.2
13+
  2480.4  C      253.6
   286.3
    43
   100
(M1)
(M1)
  2226.7
  2194.2


  2576.7 2 ? B       306.77 4 ?
  2151.65 8 ?
   100 10 
    22 3 
M1(+E2)

  2270.15
   424.83

(3)+
  2717.1  C      345.2
   490.5
    87
   100
M1
M1
  2371.8
  2226.7


  2745.4  C 17-      469.1
 
M1
  2276.4
16-
  2768.7  C      288.2
   542.1
    64
  ≤100
(M1)
M1
  2480.4
  2226.7


  2771.4  C 14-       54.3
   502.6
 
 
D
M1
  2717.1
  2268.8

13-
  2801.7  C (15,16)      575.0
 

  2226.7

  2829.6?  C 17-      553.1?
 
M1
  2276.4
16-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  2935.9  C      106.1
   190.6
 
 


  2829.6
  2745.4
17-
17-
  3123.1  C      354.4
 

  2768.7

  3269.0  C      145.9
 

  3123.1

  3283.6  C      481.9
 

  2801.7
(15,16)
  3307.7  C      184.1
 

  3123.1

  3315.9  C      544.5
 

  2771.4
14-
  3333.2  C       64.2
 
D
  3269.0

  3460.3  C      630.7
 

  2829.6
17-
  3479.3  C      733.9
 

  2745.4
17-
  3547.0?  C      611.1?
 

  2935.9

  3867.0  C      533.8
 
(M1)
  3333.2

  4366.9  C      499.9
 

  3867.0

E(level): E(level) data with ΔE<0.5 keV are from 208Rn ε decay. Others are from 212Fr α decay. Values without uncertainties are from 209Bi(α,5nγ)

Back to top

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
    23.527 (5)+       23.53 2 M1(+E2)0.028 LE166α=166 3
    63.695 (4)+       40.17 1 M1(+E2)0.026 LE33.8α=33.8 2
    71.83 7+       71.9 2 M1 6.065α=6.065
   113.784 (3)+       50.09 1 M1(+E2)0.046 LE18.6α=18.6 2
   147.95 5+       84.1 5 [M1] 3.84α=3.84
5+      124.5 1 M1 6.48α=6.48
5+      147.9 1 (M1+E2)2.3 AP2.0α2.0 AP
   173.75 (2)+       59.96 1 M1(+E2)0.070 LE11.0α=11.0 2
   208.12 (4,5)+      144.44 3 M1(+E2)0.92 LE3.7α=3.7 6
(4,5)+      184.56 5 M1(+E2)0.89 LE1.8α=1.8 4
   237.22 (4)+      123.42 3 M1+E20.7 35.7α=5.7 8
(4)+      173.50 6 M1(+E2)0.6 LE2.5α=2.5 4
(4)+      213.61 10 M1+E23.3 +17-80.49α=0.49 6
   424.83 (3)+      187.52 5 M1(+E2)0.54 LE2.03α=2.03 24
(3)+      251.05 4 M1(+E2)0.44 LE0.91α=0.91 9
   588.36 (4+,5,6+)      361.30 10 M1(+E2)0.46 LE0.309α=0.309 23
   600.53 (2,3)+      426.78 2 M1(+E2)0.28 LE0.22α=0.22 1
(2,3)+      486.79 3 M1+E21.0 50.10α=0.10 3
   734.20 (2,3)+      560.42 2 (M1+E2) 0.07α=0.07 4
(2,3)+      620.47 3 M1+E21.1 50.05α=0.05 2
   788.4 8+      716.7M1 0.057α=0.057
8+      788.2E2 0.013α=0.013
   853.41 (2,3,4)+      739.62 4 M1(+E2)1.3 LE0.040α=0.040 12
   904.0 9+      115.7[M1] 8.4α=8.4
9+      832.2E2 0.011α=0.011
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   904.47      169.7 5 [M1] 2.81α=2.81
     479.65 2 M1+E20.66 240.125α=0.125 20
  1090.5 10- 47.8 ns 10     186.5E1 0.100B(E1)(W.u.)=5.9E-7, α=0.100
  1255.7 10+      467.1E2 0.040α=0.040
  1299.9 11+       44.5M1(+E2) 26.0α=26.0
11+      396.0E2 0.061α=0.061
  1376.1 12+       76.2M1 5.39α=5.39
  1525.5 (13)+      149.4M1 4.05α=4.05
  1539.83      805.24 3 (E2) 0.012α=0.012
     939.30 3 M1+E21.7 50.014α=0.014 3
  1648.7 12-      558.2E2 0.026α=0.026
  1804.2 13+      278.7M1 0.708α=0.708
  1826.61     1226.08 4 E1(+M2)0.22 LE 
  1979.48     1378.95 5 E1(+M2)0.28 LE 
  2270.15     1365.69 7 E2(+M1)2.2 GE 
  2276.4 16- 1.5 µs 2     472.2E3 0.143B(E3)(W.u.)=25, α=0.143
16- 1.5 µs 2     750.9E3 0.037B(E3)(W.u.)=1.2, α=0.037
  2576.7      306.77 4 M1(+E2)0.8 LE0.49α=0.49 11
  2829.6 17-      553.1M1 0.112α=0.112

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
     0.06+ 1.63 h 3 
% ε = 99.45 6
% α = 0.55 6
configuration=π1h9/2ν2f5/2-1 is suggested by 1981Va29.
    23.527(5)+   configuration=π1h9/2ν2f5/2-1 is suggested by 1981Va29.
E(level): From 212Fr α decay.
Jπ(level): The M1 character of the 23.5, 40.2, 50.1 and 60.0 γ’s, the strong feeding of this cascade of transitions in 208Rn ε decay (J=0+), and the absence of crossover transitions from the 63.7, 113.8 and 173.8 levels suggest that these levels form a monotonically decreasing ΔJ=1, π=+ spin sequence built on the J=6+ ground state.
    63.695(4)+   configuration=π1h9/2ν2f5/2-1 is suggested by 1981Va29.
E(level): From 212Fr α decay.
Jπ(level): The M1 character of the 23.5, 40.2, 50.1 and 60.0 γ’s, the strong feeding of this cascade of transitions in 208Rn ε decay (J=0+), and the absence of crossover transitions from the 63.7, 113.8 and 173.8 levels suggest that these levels form a monotonically decreasing ΔJ=1, π=+ spin sequence built on the J=6+ ground state.
    71.837+   configuration=π1h9/2ν2f5/2-1 is suggested by 1981Va29.
   113.784(3)+   E(level): From 212Fr α decay.
Jπ(level): The M1 character of the 23.5, 40.2, 50.1 and 60.0 γ’s, the strong feeding of this cascade of transitions in 208Rn ε decay (J=0+), and the absence of crossover transitions from the 63.7, 113.8 and 173.8 levels suggest that these levels form a monotonically decreasing ΔJ=1, π=+ spin sequence built on the J=6+ ground state.
   173.75(2)+   E(level): From 212Fr α decay.
Jπ(level): The M1 character of the 23.5, 40.2, 50.1 and 60.0 γ’s, the strong feeding of this cascade of transitions in 208Rn ε decay (J=0+), and the absence of crossover transitions from the 63.7, 113.8 and 173.8 levels suggest that these levels form a monotonically decreasing ΔJ=1, π=+ spin sequence built on the J=6+ ground state.
  1090.510- 47.8 ns 10  μ=+2.69 3 (1985No09,2005St24)
configuration=π1h9/2ν1i13/2-1 (1985No09, 1984Fa10).
  1376.112+   Jπ(level): The cascade from the 2276 level to the 1300 level via the 750.9 E3 γ, 149.4 M1, ΔJ=1 γ, and the 76.2 M1 γ, given Jπ=11+ for the 1300 level, and the absence of any crossover transitions from these levels to levels with J<11, establishes Jπ=16-, 13+, and 12+ for the 2276, 1526, and 1376 levels, respectively.
  1525.5(13)+   Jπ(level): The cascade from the 2276 level to the 1300 level via the 750.9 E3 γ, 149.4 M1, ΔJ=1 γ, and the 76.2 M1 γ, given Jπ=11+ for the 1300 level, and the absence of any crossover transitions from these levels to levels with J<11, establishes Jπ=16-, 13+, and 12+ for the 2276, 1526, and 1376 levels, respectively.
  2194.2   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.
  2226.7   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.
  2276.416- 1.5 µs 2  Q=1.7 3 (1991Sc15,2005St24)
configuration=π1h{9/2+2π1i13/2ν3p1/2-2ν2f5/2-1 is suggested by 1991Sc15 based on a comparison of a calculated Q with the measured value.
Jπ(level): The cascade from the 2276 level to the 1300 level via the 750.9 E3 γ, 149.4 M1, ΔJ=1 γ, and the 76.2 M1 γ, given Jπ=11+ for the 1300 level, and the absence of any crossover transitions from these levels to levels with J<11, establishes Jπ=16-, 13+, and 12+ for the 2276, 1526, and 1376 levels, respectively.
  2371.8   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.
  2480.4   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.
  2717.1   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.
  2768.7   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.
  3123.1   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.
  3269.0   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.
  3283.6   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.
  3315.9   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.
  3333.2   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.
  3867.0   Jπ(level): 1984Fa10, in 209Bi(α,5nγ), have proposed Jπ assignments for several cascades feeding into the 2226 level. The arguments are complex and two of the arguments, in particular, do not seem to Be justified by the data. The authors assign mult=M1 for the 42γ from the 2269 level, based on the non-measurable halflife (<1 ns). B(E2)(W.u.)>120 rules out mult=E2; however, while B(M1)(W.u.)>0.01 is consistent with mult=M1, B(E1)(W.u.)>0.001 does not rule out mult=E1. Second, the authors assign the 545.6γ feeding the 12- 1649 level as being a stretched dipole; however, in their table 1, the 545.6γ is not resolved from the 544.5γ, and no angular distribution or conversion data are given. The authors may have additional data not mentioned in the paper. Please see the authors’ paper for detailed Jπ arguments for the indicated levels. The authors give a thorough discussion on the probable configurations of many of the 208At levels.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
    71.83    71.9E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   147.95    84.1E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   124.5E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   147.9E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   208.12   144.44E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   184.56E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   227.16   163.5E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   203.7E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   227.2E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   237.22   213.61I(γ): Iγ:Iγ(173γ)=84 10:100 9 in 212Fr α decay
   283.62   169.9E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   219.9E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   260.1E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   334.71   271.0E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   311.2E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   334.7E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   429.47   202.3E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   281.6E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   357.7E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   405.8E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   588.36   304.7E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   440.6E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   524.2E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   587.9E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
   681.7   681.7E(γ): From 212Fr α decay
I(γ): From 212Fr α decay
E(level)E(gamma)Comments

Back to top