NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = H.Fiedeldey

Found 62 matches.

Back to query form



1996EL04      Phys.Rev. C53, 2638 (1996)

G.Ellerkmann, W.Sandhas, S.A.Sofianos, H.Fiedeldey

Integral Equation Calculations for the Photodisintegration Process 4He(γ, n)3He

NUCLEAR REACTIONS 4He(γ, n), E ≤ 100 MeV; calculated σ(E). 4He(γ, p), E ≤ 100 MeV; calculated σ(θ), σ(E). Integral equation approach.

doi: 10.1103/PhysRevC.53.2638
Citations: PlumX Metrics


1995AD08      Phys.Rev. C51, 2326 (1995)

R.M.Adam, H.Fiedeldey

Hypervirial Approach to Calculating Expectation Values of the Many-Body Hamiltonian

NUCLEAR STRUCTURE A=3; A=4; calculated different potential compontents contribution to binding energy. Hypertrivial operator approach.

doi: 10.1103/PhysRevC.51.2326
Citations: PlumX Metrics


1995GA42      Int.J.Mod.Phys. E4, 431 (1995)

E.J.O.Gavin, H.Fiedeldey, S.A.Sofianos

Three-Body Forces from n-Body Inversion

doi: 10.1142/S0218301395000158
Citations: PlumX Metrics


1995GA48      Few-Body Systems 19, 59 (1995)

E.J.O.Gavin, R.M.Adam, H.Fiedeldey, S.A.Sofianos

Relationship between the Proton Charge Form Factor and the Quark-Quark Interaction

NUCLEAR STRUCTURE 1H; calculated charge form factor; deduced quark-quark interaction features. Various parametrizations.

doi: 10.1007/s006010050018
Citations: PlumX Metrics


1995LE10      Phys.Lett. 344B, 18 (1995)

H.Leeb, H.Huber, H.Fiedeldey

Extraction of Spin-Orbit Potentials from Scattering Data Via Inversion

doi: 10.1016/0370-2693(94)01593-2
Citations: PlumX Metrics


1995PA27      J.Phys.(London) G21, 1079 (1995)

G.Pantis, H.Fiedeldey, S.A.Sofianos

Dispersion Relation for Equivalent Local Potentials with Spurious and Dynamiac Energy Dependence

doi: 10.1088/0954-3899/21/8/006
Citations: PlumX Metrics


1995ST01      Phys.Rev. C51, 836 (1995)

C.Steward, H.Fiedeldey, K.Amos, L.J.Allen

Ambiguities in Strong Absorptionlike S Functions and in the Corresponding Potentials for Heavy-Ion Collisions

NUCLEAR REACTIONS 208Pb(12C, 12C), E=1449 MeV; 16O(12C, 12C), E=1503 MeV; calculated σ(θ); deduced model parameters. Fixed energy inverse scattering theory, semi-classical WKB method.

doi: 10.1103/PhysRevC.51.836
Citations: PlumX Metrics


1994AL16      Phys.Rev. C49, 3331 (1994)

L.J.Allen, K.Amos, L.Berge, H.Fiedeldey

Approximation for the Algebraic S Matrix with an Angular Momentum Dependent Potential Parameter

NUCLEAR REACTIONS 208Pb(12C, 12C), E=1.449, 2.4 GeV; analyzed σ data; deduced algebraic potential parameters. Algebraic S-matrix approximated by angular momentum dependent potential parameter.

doi: 10.1103/PhysRevC.49.3331
Citations: PlumX Metrics


1993AD04      J.Phys.(London) G19, 703 (1993)

R.M.Adam, H.Fiedeldey

5He(Lambda) and 6He(Lambda)(Lambda) Calculations by Means of the Integrodifferential Equation Approach

NUCLEAR STRUCTURE A=5, 6; calculated hypernuclei binding energies. Four-, six-body systems modelling.

doi: 10.1088/0954-3899/19/5/005
Citations: PlumX Metrics


1993AD06      Nucl.Phys. A559, 157 (1993)

R.M.Adam, H.Fiedeldey, S.A.Sofianos, H.Leeb

Error Propagation from Nucleon-Nucleon Data to Three- and Four-Nucleon Binding Energies

NUCLEAR STRUCTURE 3H, 4He; calculated binding energy distributions; deduced nucleon-nucleon data error propagation role.

doi: 10.1016/0375-9474(93)90184-Y
Citations: PlumX Metrics


1993AL01      Phys.Lett. 298B, 36 (1993)

L.J.Allen, L.Berge, C.Steward, K.Amos, H.Fiedeldey, H.Leeb, R.Lipperheide, P.Frobrich

An Optical Potential from Inversion of the 350 MeV 16O-16O Scattering Data

NUCLEAR REACTIONS 16O(16O, 16O), E=350 MeV; analyzed σ(θ); deduced optical potential. Quantal inversion of data, S-matrix fit.

doi: 10.1016/0370-2693(93)91702-O
Citations: PlumX Metrics


1993AM04      Phys.Rev. C47, 2827 (1993)

K.Amos, L.Berge, L.J.Allen, H.Fiedeldey

Algebraic and Coordinate Space Potentials from Heavy Ion Scattering

NUCLEAR REACTIONS 208Pb(12C, 12C), E=0.125-2.4 GeV; 208Pb(14N, 14N), E=147 MeV; 208Pb(16O, 16O), E=170 MeV; calculated S-functions; deduced scattering potentials. Inversion scheme.

doi: 10.1103/PhysRevC.47.2827
Citations: PlumX Metrics


1993HO09      Nucl.Phys. A556, 29 (1993)

L.L.Howell, S.A.Sofianos, H.Fiedeldey, G.Pantis

Nucleon-Alpha Potentials by Marchenko Inversion and Supersymmetry

NUCLEAR REACTIONS 4He(n, n), E(cm)=2-1000 MeV; calculated phase shifts; deduced potential parameters. Marchenko inversion method.

doi: 10.1016/0375-9474(93)90236-Q
Citations: PlumX Metrics


1993PA15      Nucl.Phys. A559, 266 (1993)

G.Pantis, S.A.Sofianos, H.Fiedeldey, R.Lipperheide, P.E.Hodgson

Dispersive Correction to the p + 16O Optical Model and the Effective Nucleon-Nucleon Potential

NUCLEAR REACTIONS, ICPND 16O(p, p), E=23.4-52.5 MeV; analyzed σ(θ); deduced potential parameters, reaction σ(E). Optical model, dispersive corrections.

doi: 10.1016/0375-9474(93)90191-Y
Citations: PlumX Metrics


1993PA26      Nucl.Phys. A565, 628 (1993)

G.Pantis, H.Fiedeldey, S.A.Sofianos

Dispersion Relation Approach to the Optical Potential Resonating Group Formulation of the n + 40Ca Reaction

NUCLEAR REACTIONS 40Ca(n, n), E=11.9-30.3 MeV; analyzed σ(θ); deduced model parameters. Semi-microscopic model, dispersion relation approach.

doi: 10.1016/0375-9474(93)90049-4
Citations: PlumX Metrics


1993SO08      Yad.Fiz. 56, No 7, 5 (1993); Phys.Atomic Nuclei 56, 859 (1993)

S.A.Sofianos, H.Fiedeldey, W.Sandhas

Integral and Integrodifferential-Equation Approach to Helium Photodisintegration

NUCLEAR REACTIONS 4He(γ, p), (γ, n), E=21-34 MeV; calculated photodisintegration σ(E); deduced no resonance structure. Integral, integrodifferential equation approaches.


1993SO11      Phys.Rev. C48, 2285 (1993)

S.A.Sofianos, H.Fiedeldey, W.Sandhas

Photodisintegration of 4He in the Integrodifferential Equation Approach

NUCLEAR REACTIONS 4He(γ, n), (γ, p), E=20-60 MeV; analyzed σ(E). Integrodifferential approach.

doi: 10.1103/PhysRevC.48.2285
Citations: PlumX Metrics


1992AD05      J.Phys.(London) G18, 1365 (1992)

R.M.Adam, S.A.Sofianos, H.Fiedeldey, M.Fabre de la Ripelle

Integro-Differential Equation Approach Extended to Larger Nuclei

NUCLEAR STRUCTURE 4He, 12C, 16O; calculated binding energy. Integro-differential equation approach.

doi: 10.1088/0954-3899/18/8/011
Citations: PlumX Metrics


1992AL13      J.Phys.(London) G18, L179 (1992)

L.J.Allen, K.Amos, H.Fiedeldey

On Semiclassical Inversion of Heavy-Ion Scattering Phase Shifts

NUCLEAR REACTIONS 90Zr(12C, 12C), E=420 MeV; 208Pb(12C, 12C), E=125, 420 MeV; 208Pb(16O, 16O), E=170 MeV; calculated deflection function. Semi-classical inversion procedure.

doi: 10.1088/0954-3899/18/9/004
Citations: PlumX Metrics


1992SO03      Nucl.Phys. A540, 199 (1992)

S.A.Sofianos, H.Fiedeldey, R.Lipperheide, G.Pantis, P.E.Hodgson

Dispersive Corrections to the Resonating Group αα Potential

NUCLEAR REACTIONS 4He(α, α), E(cm) ≈ 20-70 MeV; calculated phase shifts vs E. Resonating group method, phenomenological potentials, dispersive corrections.

doi: 10.1016/0375-9474(92)90200-4
Citations: PlumX Metrics


1991AD04      J.Phys.(London) G17, L157 (1991)

R.M.Adam, H.Fiedeldey, S.A.Sofianos, M.Fabre de la Ripelle

The Integrodifferential Equation Approach Compared with Shell Model Calculations on the 4He Nucleus

NUCLEAR STRUCTURE 4He; calculated binding energy. Integrodifferential approach, shell model comparison.

doi: 10.1088/0954-3899/17/9/003
Citations: PlumX Metrics


1991AL16      Phys.Rev. C44, 1606 (1991)

L.J.Allen, H.Fiedeldey, S.A.Sofianos, K.Amos, C.Steward

Heavy-Ion Potentials Derived from Strong-Absorption-Model Parametrizations of the Scattering Function

NUCLEAR REACTIONS 12C(12C, 12C), E=360 MeV; 40Ca(16O, 16O), E=1503 MeV; calculated potentials vs inter-nuclear separation, S-functions. Strong absorption model, inverse scattering problem.

doi: 10.1103/PhysRevC.44.1606
Citations: PlumX Metrics


1991OE01      Phys.Rev. C43, 25 (1991)

W.Oehm, S.A.Sofianos, H.Fiedeldey, M.Fabre de la Ripelle

Integro-Differential Equation Approach. II. Triton and α-Particle Wave Functions, Graphical Plots

NUCLEAR STRUCTURE 3H; calculated wave functions, binding energy. 4He; calculated wave functions. Integro-differential equation approach.

doi: 10.1103/PhysRevC.43.25
Citations: PlumX Metrics


1991OE02      Phys.Rev. C44, 81 (1991)

W.Oehm, H.Fiedeldey, S.A.Sofianos, M.Fabre de la Ripelle

Integro-Differential Equation Approach. III. Triton and α-Particle Bound States. Realistic Forces and Two-Body Correlations

NUCLEAR STRUCTURE A=3, 4; calculated binding energies, Faddeev amplitudes.

doi: 10.1103/PhysRevC.44.81
Citations: PlumX Metrics


1991ST07      Phys.Rev. C44, 1493 (1991)

C.Steward, K.Amos, H.Leeb, L.J.Allen, H.Fiedeldey, S.A.Sofianos

Mass and Charge Attributes of Heavy Ion Potentials Obtained by Inversion

NUCLEAR REACTIONS 12C, 40Ca, 90Zr, 208Pb(16O, 16O), E=1503 MeV; calculated S-function. 208Pb(16O, 16O), E=1.503 GeV; calculated σ(θ). WKB inverse scattering model.

doi: 10.1103/PhysRevC.44.1493
Citations: PlumX Metrics


1990AL10      Phys.Rev. C41, 2021 (1990)

L.J.Allen, K.Amos, C.Steward, H.Fiedeldey

12C-12C Potential by Inversion

NUCLEAR REACTIONS 12C(12C, 12C), E=0.36-2.4 GeV; analyzed σ(θ); deduced 12C-12C interaction potential. WKB inverse scattering theory, parametrised S-function.

doi: 10.1103/PhysRevC.41.2021
Citations: PlumX Metrics


1990AM02      Phys.Rev.Lett. 64, 625 (1990)

K.Amos, L.Berge, H.Fiedeldey, I.Morrison, L.J.Allen

Algebraic Scattering Theory for Heavy Ions

NUCLEAR REACTIONS 12C(12C, 12C), E=1.016 GeV; analyzed data; deduced algebraic potential functions.

doi: 10.1103/PhysRevLett.64.625
Citations: PlumX Metrics


1990OE01      Phys.Rev. C42, 2322 (1990)

W.Oehm, S.A.Sofianos, H.Fiedeldey, M.Fabre de la Ripelle

Integrodifferential Equation Approach. I. Triton and α-Particle Binding Energies

NUCLEAR STRUCTURE 3H, 3,4He; calculated binding energies. Integrodifferential equation approach, hyperspherical coordinates.

doi: 10.1103/PhysRevC.42.2322
Citations: PlumX Metrics


1990PA16      Phys.Rev. C42, 142 (1990)

A.Papastylianos, S.A.Sofianos, H.Fiedeldey, E.O.Alt

Complex Local Potential by Marchenko Inversion of Partly Real and Partly Complex Phase Shift

NUCLEAR REACTIONS 2H(n, n), E ≤ 600 MeV; calculated quartet channel phase shifts; deduced equivalent local two-body potentials. Exact few-body theory.

doi: 10.1103/PhysRevC.42.142
Citations: PlumX Metrics


1990SL02      Nucl.Phys. A515, 57 (1990)

I.Slaus, M.B.Epstein, T.E.Mdlalose, H.Fiedeldey, W.Sandhas

Proton-Induced Break-Up of 3He at 35 MeV

NUCLEAR REACTIONS 3He(p, 2p), (p, pd), E=35 MeV; measured σ(θ1, θ2, E2), σ(θp, Ep, θd); deduced reaction mechanism. Model comparison.

doi: 10.1016/0375-9474(90)90322-D
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC0465.


1990SO05      Phys.Rev. C42, R506 (1990)

S.A.Sofianos, A.Papastylianos, H.Fiedeldey, E.O.Alt

Role of Levinson's Theorem in Neutron-Deuteron Quartet S-Wave Scattering

NUCLEAR REACTIONS 2H(n, n), E ≤ 400 MeV; analyzed quartet S-wave phase shift behavior; deduced unphysical bound state role.

doi: 10.1103/PhysRevC.42.R506
Citations: PlumX Metrics


1989FA10      Few-Body Systems 6, 157 (1989)

M.Fabre de la Ripelle, H.Fiedeldey, S.A.Sofianos

Several Versions of the Integro-Differential Equation Approach to Bound Systems

NUCLEAR STRUCTURE A=3, 4; calculated binding energy. Integro-differential equation approach, special versions.


1988FA04      Phys.Rev. C38, 449 (1988)

M.Fabre de la Ripelle, H.Fiedeldey, S.A.Sofianos

Integrodifferential Equation for Few- and Many-Body Systems

NUCLEAR STRUCTURE A=3, 4; calculated effective potential parameters, binding energies.

doi: 10.1103/PhysRevC.38.449
Citations: PlumX Metrics


1988MD01      Nucl.Phys. A480, 215 (1988)

T.E.Mdlalose, H.Fiedeldey, W.Sandhas

Deuteron on Deuteron Break-Up in Regions Characterized by Competing Mechanisms

NUCLEAR REACTIONS, MECPD 2H(d, nd), E=19.8-36 MeV; calculated σ(θp, θd, Ep); deduced final state interactions role.

doi: 10.1016/0375-9474(88)90394-6
Citations: PlumX Metrics


1988SO03      Phys.Lett. 205B, 163 (1988)

S.A.Sofianos, H.Fiedeldey, M.Fabre de la Ripelle

Model Ground State Calculations with Two-Variable Integro-Differential Equations for 16O

NUCLEAR STRUCTURE 16O; calculated binding energy. Variational, Green function Monte Carlo, hypernetted chain methods.

doi: 10.1016/0370-2693(88)91640-1
Citations: PlumX Metrics


1987FI03      Nucl.Phys. A463, 335c (1987)

H.Fiedeldey

Four-Body Scattering and Break-Up Reactions in the Integral Equation Approach

NUCLEAR REACTIONS 3H(n, n), E ≤ 20 MeV; compiled phase shifts; 3H(p, p), E=6.52 MeV; 2H(d, p), (d, n), E=6.1, 13.8 MeV; 3He(p, p), E=31 MeV; compiled σ(θ); 4He(γ, n), E=20-130 MeV; 2H(d, p), E=83 MeV; compiled σ(E); 2H(d, nd), E=275 MeV; 3He(p, pd), E=45 MeV; compiled σ(θd, θn, Ed).

doi: 10.1016/0375-9474(87)90676-2
Citations: PlumX Metrics


1986FI05      Phys.Rev. C33, 1581 (1986)

H.Fiedeldey, S.A.Sofianos, L.J.Allen, R.Lipperheide

Determination of Nonlocal Potentials from the Phase Shifts

NUCLEAR REACTIONS 40Ca(n, n), E=20, 50, 100 MeV; calculated phase shifts; deduced nonlocal potentials. WKB approximation.

doi: 10.1103/PhysRevC.33.1581
Citations: PlumX Metrics


1986MD01      Phys.Rev. C33, 784 (1986)

T.E.Mdlalose, H.Fiedeldey, W.Sandhas

Four-Body Calculation of the Breakup Reaction 3He(p, pd)1H

NUCLEAR REACTIONS 3H(p, pd), E=35, 45 MeV; calculated σ(θp, θd, Ep). Four-body theory, kinematically complete breakup.

doi: 10.1103/PhysRevC.33.784
Citations: PlumX Metrics


1986MD02      Nucl.Phys. A457, 273 (1986)

T.E.Mdlalose, H.Fiedeldey, W.Sandhas

Deuteron on Deuteron 2H(d, nd)p Break-Up in the AGS Formalism

NUCLEAR REACTIONS 2H(d, nd), E=52.3 MeV; calculated σ(θp, θd) vs Ed. Kinematically complete breakup.

doi: 10.1016/0375-9474(86)90377-5
Citations: PlumX Metrics


1985LE20      Phys.Rev. C32, 1223 (1985)

H.Leeb, H.Fiedeldey, R.Lipperheide

Optical Potentials from the Scattering Cross Section by Inversion

NUCLEAR REACTIONS 40Ca(α, α), E=104 MeV; calculated σ(θ). Phillips-Turchin condition based inversion for optical potentials.

doi: 10.1103/PhysRevC.32.1223
Citations: PlumX Metrics


1985LI05      Z.Phys. A320, 265 (1985)

R.Lipperheide, H.Fiedeldey, E.W.Schmid, S.A.Sofianos

Equivalent Local Potential for the Fish Bone Optical Potential by Inversion of Its Phase Shifts

NUCLEAR REACTIONS 16O(α, α), E(cm)=30, 40, 50 MeV; calculated phase shifts; deduced surface region Pauli barrier evidence in local equivalent potentials. Fish bone optical model, inversion procedures.

doi: 10.1007/BF01881274
Citations: PlumX Metrics


1985SO06      Phys.Rev. C31, 2300 (1985)

S.A.Sofianos, H.Fiedeldey, L.J.Allen, R.Lipperheide

Equivalent Local Potentials for Nucleon-Alpha Scattering

NUCLEAR REACTIONS 4He(n, n), E=15-25 MeV; calculated equivalent local potentials.

doi: 10.1103/PhysRevC.31.2300
Citations: PlumX Metrics


1985SO07      Phys.Rev. C32, 400 (1985)

S.A.Sofianos, H.Fiedeldey, W.Sandhas

Four-Nucleon Scattering in the K-Matrix Approach with Improved Treatment of the (2 + 2) Channels

NUCLEAR REACTIONS 3He(p, p), 2H(d, p), (d, n), E=13.8-81 MeV; calculated σ(θ) above break-up threshold. K-matrix approach, improved treatment of (2+2)-subsystem amplitude, Alt-Grassberger-Sandhas equations.

doi: 10.1103/PhysRevC.32.400
Citations: PlumX Metrics


1985SO08      Nucl.Phys. A441, 573 (1985)

S.A.Sofianos, H.Fiedeldey

Comparison of Several Equivalent Local Potentials for Microscopic Nonlocal Nα Potentials

NUCLEAR REACTIONS 4He(n, n), (p, p), E=10, 20 MeV; calculated phase shifts; deduced effective nuclear force repulsiveness. Microscopic nonlocal potentials.

doi: 10.1016/0375-9474(85)90439-7
Citations: PlumX Metrics


1984FI11      Phys.Rev. C30, 434 (1984)

H.Fiedeldey, R.Lipperheide, K.Naidoo, S.A.Sofianos

Semiclassical and Quantal Inversion of Nuclear Scattering at Fixed Energy

NUCLEAR REACTIONS 4He(α, α), E=23.1, 53.4, 120 MeV; calculated deflection, scattering function, potential vs separation distance. 58Ni(p, p), E=36, 55, 100.4 MeV; 4He(n, n), E(cm)=30 MeV; 12C(α, α), E=104 MeV; calculated potential vs separation distance. Semi-classical, quantal inversion problems.

doi: 10.1103/PhysRevC.30.434
Citations: PlumX Metrics


1984NA11      Nucl.Phys. A419, 13 (1984)

K.Naidoo, H.Fiedeldey, S.A.Sofianos, R.Lipperheide

Potential Inversion for p- and α-Scattering at Fixed Energy

NUCLEAR REACTIONS 58Ni(p, p), E=100.4 MeV; 4He(α, α), E=40, 120 MeV; 12C(α, α), E=104 MeV; calculated potential vs separation distance. Inversion technique.

doi: 10.1016/0375-9474(84)90281-1
Citations: PlumX Metrics


1983FI07      Z.Phys. A311, 339 (1983)

H.Fiedeldey, S.A.Sofianos

Nonlocal Potentials and Their Exact and Approximate Local and Velocity-Dependent Equivalents

NUCLEAR REACTIONS 40Ca(n, n), E=24 MeV; calculated approximation to exact equivalent potential, nonlocal potential damping factor.

doi: 10.1007/BF01415690
Citations: PlumX Metrics


1982FA04      Ann.Phys.(New York) 138, 275 (1982)

M.Fabre de la Ripelle, H.Fiedeldey, G.Wiechers

Beyond the First Order of the Hyperspherical Harmonic Expansion Method

NUCLEAR STRUCTURE 16O, 40Ca; calculated binding energies, charge form factors, charge densities. Complete hyperspherical harmonic basis subset.

doi: 10.1016/0003-4916(82)90188-9
Citations: PlumX Metrics


1982LI13      Phys.Rev. C26, 770 (1982)

R.Lipperheide, S.Sofianos, H.Fiedeldey

Potential Inversion for Scattering at Fixed Energy

NUCLEAR REACTIONS 40Ca(n, n), E=48 MeV; 58Ni(n, n), E=100.4 MeV; 16O(n, n), E=52.5 MeV; calculated complex potential shapes. Inverse scattering problem.

doi: 10.1103/PhysRevC.26.770
Citations: PlumX Metrics


1982SC16      Z.Phys. A306, 37 (1982)

E.W.Schmid, S.Saito, H.Fiedeldey

The Concept of a Pauli Barrier in Nucleus-Nucleus Scattering

NUCLEAR REACTIONS 4He(α, α), E=2.9 MeV; 16O(α, α), E=2.44, 6, 10.61, 21 MeV; calculated equivalent local potential. Two-cluster fish bone optical model, relative motion Pauli effects.

doi: 10.1007/BF01413405
Citations: PlumX Metrics


1981PA05      Can.J.Phys. 59, 225 (1981)

G.Pantis, H.Fiedeldey, D.W.L.Sprung

The Charge Form Factor of the Model Triton for Two-Particle Interactions with Continuum Bound States

NUCLEAR STRUCTURE 3H; calculated charge form factor. Partly nonlocal interactions.

doi: 10.1139/p81-028
Citations: PlumX Metrics


1980PA03      Z.Phys. A294, 101 (1980)

G.Pantis, H.Fiedeldey, D.W.L.Sprung

Three-Particle Bound States for Partly Nonlocal Interactions with Continuum Bound States

NUCLEAR STRUCTURE 3H; calculated binding energy. Partly nonlocal interactions.

doi: 10.1007/BF01473126
Citations: PlumX Metrics


1979FR09      Phys.Rev.Lett. 43, 1147 (1979)

P.Frobrich, R.Lipperheide, H.Fiedeldey

Long-Range Heavy-Ion Potential Induced by Multiple Coulomb Excitation

NUCLEAR REACTIONS 184W(18O, X), E=90 MeV; 238U(40Ar, X), E=240 MeV; measured nothing; calculated long-range HI potential from multiple Coulomb excitation.

doi: 10.1103/PhysRevLett.43.1147
Citations: PlumX Metrics


1979LI05      Phys.Lett. 82B, 39 (1979)

R.Lipperheide, H.Fiedeldey, H.Haberzettl, K.Naidoo

Determination of the Potential for Back-Angle Enhanced Elastic Heavy-Ion Scattering: Application to the Scattering of 16O on 28Si

NUCLEAR REACTIONS 28Si(16O, 16O), E=50, 55 MeV; calculated real, imaginary parts of potential used to fit σ(θ) by parameterizing scattering function with Regge pole, background term.

doi: 10.1016/0370-2693(79)90420-9
Citations: PlumX Metrics


1977MC04      Nucl.Phys. A281, 310 (1977)

N.J.McGurk, H.Fiedeldey

The Deuteron Wave Function at Short Range and the Triton

NUCLEAR STRUCTURE 2H; calculated wave function.

doi: 10.1016/0375-9474(77)90028-8
Citations: PlumX Metrics


1977SO05      Phys.Lett. 68B, 117 (1977)

S.Sofianos, H.Fiedeldey, N.J.McGurk

The Binding Energies of 3H and 4He

NUCLEAR STRUCTURE 3H, 4He; calculated binding energy.

doi: 10.1016/0370-2693(77)90180-0
Citations: PlumX Metrics


1975MC17      Z.Phys. A274, 365 (1975)

N.J.McGurk, H.Fiedeldey

Approximately Linear Relations between Two-Nucleon and Three-Nucleon Parameters

NUCLEAR STRUCTURE 3H; calculated correlation between binding energy, n+d scattering length.

doi: 10.1007/BF01434049
Citations: PlumX Metrics


1974FI11      Lett.Nuovo Cim. 9, 301 (1974)

H.Fiedeldey

The Relative Importance of the Deuteron Wave Function and the Phase Shift for the Triton

NUCLEAR STRUCTURE 3H; calculated binding energy.

doi: 10.1007/BF02759302
Citations: PlumX Metrics


1974MC05      Phys.Lett. 49B, 13 (1974)

N.J.McGurk, H.Fiedeldey, H.De Groot, H.J.Boersma

Triton Binding Energy with Phase-Equivalent Potentials

NUCLEAR STRUCTURE 3H; calculated binding energy.

doi: 10.1016/0370-2693(74)90568-1
Citations: PlumX Metrics


1972FI13      Nucl.Phys. A189, 83 (1972)

H.Fiedeldey, N.J.McGurk

Further Investigations of Off-Shell Effects in the Triton

NUCLEAR STRUCTURE 3H; calculated binding energy; analyzed off-shell effects.

doi: 10.1016/0375-9474(72)90648-3
Citations: PlumX Metrics


1971FI05      Phys.Lett. 35B, 195 (1971)

H.Fiedeldey

The Sensitivity of the Binding Energies of the Triton and Nuclear Matter to the High-Energy Phase Shift

NUCLEAR STRUCTURE 3H; calculated binding energy.

doi: 10.1016/0370-2693(71)90172-9
Citations: PlumX Metrics


1970FI14      Nucl.Phys. A156, 242 (1970)

H.Fiedeldey

The Dependence of the Triton Binding Energy on the High-Energy Phase Shift

NUCLEAR STRUCTURE 3H; calculated binding energy dependence on high-energy phase shift.

doi: 10.1016/0375-9474(70)90139-9
Citations: PlumX Metrics


Back to query form