NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = A.V.Voinov

Found 63 matches.

Back to query form



2023BR13      Phys.Rev. C 108, L061601 (2023)

K.Brandenburg, G.Hamad, Z.Meisel, C.R.Brune, D.E.Carter, R.J.deBoer, J.Derkin, C.Feathers, D.C.Ingram, Y.Jones-Alberty, B.Kenady, T.N.Massey, M.Saxena, D.Soltesz, S.K.Subedi, A.V.Voinov, J.Warren, M.Wiescher

Measurements of the 13C(α, n)16O cross section up to Eα=8 MeV

doi: 10.1103/PhysRevC.108.L061601
Citations: PlumX Metrics


2023VO08      Phys.Rev. C 108, 034302 (2023)

A.V.Voinov, N.Alanazi, S.Akhtar, S.Dhakal, C.R.Brune, S.M.Grimes, T.N.Massey, Z.Meisel, C.E.Parker, A.L.Richard

Spin cutoff factor and level density for 59Ni from an analysis of compound nuclear reactions

doi: 10.1103/PhysRevC.108.034302
Citations: PlumX Metrics


2022HA25      Phys.Rev. C 106, 025804 (2022)

G.Hamad, K.Brandenburg, Z.Meisel, C.R.Brune, D.E.Carter, D.C.Ingram, Y.Jones-Alberty, T.N.Massey, M.Saxena, D.Soltesz, S.K.Subedi, A.V.Voinov

Measurements of the 96Zr(α, n)99Mo cross section for astrophysics and applications

doi: 10.1103/PhysRevC.106.025804
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2807.


2021MC05      Phys.Rev. C 103, 064607 (2021)

A.M.McEvoy, H.W.Herrmann, Y.Kim, T.S.Sedillo, H.Geppert-Kleinrath, C.R.Brune, T.N.Massey, A.V.Voinov, C.E.Parker, M.S.Rubery, W.Stoeffl

13C(n, 2nγ)12C γ-ray production in the 14-16 MeV incident neutron energy range

NUCLEAR REACTIONS 12,13C(n, 2nγ), (n, n'γ), E=14.4 to 15.8 MeV; measured Eγ, Iγ using Gas Cherenkov Detector (GCD) and enriched targets at the Omega Laser Facility and at the Ohio University Edwards Accelerator Laboratory; deduced σ(E), and compared with MCNP6.1 predictions. Relevance to feasibility of using 13C-based plastic ablators with embedded 12C layers for 'dark mix' diagnosis of inertial confinement fusion (ICF) implosions.

doi: 10.1103/PhysRevC.103.064607
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14710.


2021SO05      Phys.Rev. C 103, 015802 (2021)

D.Soltesz, M.A.A.Mamun, A.V.Voinov, Z.Meisel, B.A.Brown, C.R.Brune, S.M.Grimes, H.Hadizadeh, M.Hornish, T.N.Massey, J.E.O'Donnell, W.E.Ormand

Determination of the 60Zn level density from neutron evaporation spectra

NUCLEAR REACTIONS 58Ni(3He, n), E=10 MeV; measured E(n), I(n) by time-of-flight method using NE213 liquid organic scintillators at Edwards Accelerator Laboratory; deduced differential σ(En) and for σ(Ep), the latter from experimental data in 2007Vo08, and compared to theoretical calculations using TALYS-V1.8. 60Zn; deduced level density for 60Zn as function of excitation energy up to 10 MeV, and compared to global theoretical models, including phenomenological, microscopic, and shell-model based calculations. Relevance to confirmation of Hauser-Feshbach formalism for 59Cu(p, γ)60Zn reaction rate at x-ray burst temperatures.

doi: 10.1103/PhysRevC.103.015802
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2593.


2021VO11      Phys.Rev. C 104, 015805 (2021)

A.V.Voinov, K.Brandenburg, C.R.Brune, R.Giri, S.M.Grimes, T.Massey, Z.Meisel, S.N.Paneru, A.L.Richard, G.Perdikakis, A.Falduto

Reduction of the neutron imaginary potential off the stability line and its possible impact on neutron capture rates

NUCLEAR REACTIONS 48Ca(11B, X)59Mn*, E=21.8 MeV; measured E(n), I(n), E(p), I(p), Eα, Iα emitted by the compound nucleus 59Mn using ΔE-E Si detector telescope at the Edwards Accelerator Laboratory; analyzed optical model potentials (OMP) with their original parametrizations as well as with adjusted isovector imaginary components using EMPIRE code and BSFG Egidy level-density parametrization; deduced importance of inclusion of isovector component of the imaginary potential; discussed consequences for astrophysical reaction-rate calculations.

doi: 10.1103/PhysRevC.104.015805
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2654.


2020GA12      Phys.Rev. C 101, 055805 (2020)

P.Gastis, G.Perdikakis, J.Dissanayake, P.Tsintari, I.Sultana, C.R.Brune, T.N.Massey, Z.Meisel, A.V.Voinov, K.Brandenburg, T.Danley, R.Giri, Y.Jones-Alberty, S.Paneru, D.Soltesz, S.Subedi

Constraining the destruction rate of 40K in stellar nucleosynthesis through the study of the 40Ar(p, n)40K reaction

NUCLEAR REACTIONS 40Ar(p, n)40K, E(cm)=3.3-3.9 MeV; measured In, Eγ, Iγ, and differential σ(θ, E) using neutron time-of-flight technique with plastic scintillators for neutron detection and LaBr3 scintillator for γ detection at the Edwards Accelerator Laboratory of Ohio University; deduced total σ(E), and partial σ(E) populating discrete states. 40K(n, p), E(cm)=3.3-3.9 MeV; deduced thermonuclear reaction rates for the forward and reverse reactions. Comparison with Hauser-Feshbach calculations using the statistical model code TALYS, and with theoretical rates in the REACLIB library. Relevance to yield of 40K in nucleosynthesis, and impact on galactic chemical evolution models for the study of properties of exoplanets.

doi: 10.1103/PhysRevC.101.055805
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2570.


2020SC04      Phys.Rev. C 101, 045806 (2020)

P.Scholz, M.Guttormsen, F.Heim, A.C.Larsen, J.Mayer, D.Savran, M.Spieker, G.M.Tveten, A.V.Voinov, J.Wilhelmy, F.Zeiser, A.Zilges

Primary γ-ray intensities and γ-strength functions from discrete two-step γ-ray cascades in radiative proton-capture experiments

NUCLEAR REACTIONS 63,65Cu(p, γ), E=2.0, 3.5 MeV; measured Eγ, Iγ, γγ-coin, primary γ rays, two-step γ-ray cascades (TSCs) using the HORUS array of 14 HPGe detectors at the Institute for Nuclear Physics, University of Cologne. 64,66Zn; deduced levels, J, π, primary γ-ray intensities, dipole strength functions, and absolute γ-ray strength functions. Comparison with theoretical predictions, generalized Brink-Axel hypothesis, and other experimental results. Relevance of reaction rates of radiative capture reactions to nucleosynthesis of heavy nuclei in explosive stellar environments.

doi: 10.1103/PhysRevC.101.045806
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020VO12      Phys.Rev. C 102, 064005 (2020)

A.V.Voinov, S.Akhtar, N.Alanazi, K.Brandenburg, C.R.Brune, T.W.Danley, S.Dhakal, R.Giri, T.N.Massey, S.N.Paneru, C.E.Parker, A.L.Richard, C.J.Forrest, D.Schneider, G.Grim

Cross section of neutrons from the 2H(n, 2n) reaction at En = 15 MeV

NUCLEAR REACTIONS 16O(n, n), 2H(n, 2n), E=15 MeV; measured reaction products, En, In; deduced cross sections using H2O and D2O targets and NE213 liquid scintillator at the Swinger neutron facility of Edwards Accelerator Laboratory. Comparison with models based on phase-space approximation used in the ENDF/B-VIII.0 data library and in the MCNP neutron transport code, and using the rigorous model based on Faddeev equations.

doi: 10.1103/PhysRevC.102.064005
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14681.


2019DH01      Nucl.Sci.Eng. 193, 1033 (2019)

S.Dhakal, C.R.Brune, T.N.Massey, S.M.Grimes, A.V.Voinov, S.Akhtar, An.P.D.Ramirez, A.L.Richard

Investigation of Neutron Cross Section for Iron in the ENDF Library wiTh. Pulsed Sphere Measurements

NUCLEAR REACTIONS 56Fe(n, n), (n, n'), E=7.2-10 MeV; measured reaction products, En, In; deduced σ. Comparison with MCNP simulations, ENDF/B libraries.

doi: 10.1080/00295639.2019.1591095
Citations: PlumX Metrics


2019FO20      Phys.Rev. C 100, 034001 (2019)

C.J.Forrest, A.Deltuva, W.U.Schroder, A.V.Voinov, J.P.Knauer, E.M.Campbell, G.W.Collins, V.Yu.Glebov, O.M.Mannion, Z.L.Mohamed, P.B.Radha, S.P.Regan, T.C.Sangster, C.Stoeckl

Deuteron breakup induced by 14-MeV neutrons from inertial confinement fusion

NUCLEAR REACTIONS 2H(n, 2n)1H, E=14 MeV, [neutron beam from inertial confinement fusion platform using the OMEGA Laser System at the University of Rochester]; measured En, In emitted by deuteron breakup using a TOF spectrometer with liquid scintillators; deduced angle-averaged double differential σ (En=0.5 to 10 MeV), contributions from the neutron-induced deuteron breakup from the difference in spectra obtained from a deuterated and the corresponding nondeuterated reaction vessel. Neutrons generated in the deuteron breakup reaction modeled using the neutron transport code MCNP. Experimental results compared to model calculations employing realistic nucleon-nucleon (NN) and 3N forces.

doi: 10.1103/PhysRevC.100.034001
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14575.


2019GR05      Phys.Rev. C 99, 064331 (2019)

S.M.Grimes, T.N.Massey, A.V.Voinov

Level density rotational enhancement factor

NUCLEAR STRUCTURE 24Na, 25,26Mg, 159,161,162,163,164,165Dy, 235,238U; analyzed level densities for deformed nuclei with spherical and deformed spin distributions using resonance counting method, average level spacing at neutron separation energy, S(n), rotational enhancement factor. Comparison with level density predictions using the Bethe spin distribution for spherical nuclei.

doi: 10.1103/PhysRevC.99.064331
Citations: PlumX Metrics


2019VO05      Phys.Rev. C 99, 054609 (2019)

A.V.Voinov, T.Renstrom, D.L.Bleuel, S.M.Grimes, M.Guttormsen, A.C.Larsen, S.N.Liddick, G.Perdikakis, A.Spyrou, S.Akhtar, N.Alanazi, K.Brandenburg, C.R.Brune, T.W.Danley, S.Dhakal, P.Gastis, R.Giri, T.N.Massey, Z.Meisel, S.Nikas, S.N.Paneru, C.E.Parker, A.L.Richard

Level densities of 74, 76Ge from compound nuclear reactions

NUCLEAR STRUCTURE 68,70Zn(7Li, p), E=16 MeV; measured evaporated proton spectra from 2-25 MeV, σ, yields using silicon ΔE-E telescope at the Edwards tandem accelerator laboratory, Athens, Ohio. 74,76Ge; deduced nuclear level densities. Comparison with theoretical calculations using coupled-channel model of the EMPIRE code, GCM-RIPL-global, and BSFG-RIPL-global density models.

doi: 10.1103/PhysRevC.99.054609
Citations: PlumX Metrics


2018JO01      Phys.Rev. C 97, 024327 (2018)

M.D.Jones, A.O.Macchiavelli, M.Wiedeking, L.A.Bernstein, H.L.Crawford, C.M.Campbell, R.M.Clark, M.Cromaz, P.Fallon, I.Y.Lee, M.Salathe, A.Wiens, A.D.Ayangeakaa, D.L.Bleuel, S.Bottoni, M.P.Carpenter, H.M.Davids, J.Elson, A.Gorgen, M.Guttormsen, R.V.F.Janssens, J.E.Kinnison, L.Kirsch, A.C.Larsen, T.Lauritsen, W.Reviol, D.G.Sarantites, S.Siem, A.V.Voinov, S.Zhu

Examination of the low-energy enhancement of the γ-ray strength function of 56Fe

NUCLEAR REACTIONS 56Fe(p, p'), E=16 MeV; measured Eγ, Iγ, γ(θ) for discrete and continuum γ rays, γ(linear polarization) for primary γ rays, pγγ-coin using GRETINA (Gamma-Ray Energy Tracking In-beam Nuclear Array) for γ detection and Washington University Phoswich Wall for protons; deduced multipolarity of continuum γ rays, γ-ray strength function (γSF) with the model-independent ratio method, low-energy enhancement, identical shapes for γSFs constructed with 2+ and 4+ final states consistent with Brink hypothesis. Comparison with previous experimental results.

doi: 10.1103/PhysRevC.97.024327
Citations: PlumX Metrics


2017GU21      Phys.Rev. C 96, 024313 (2017)

M.Guttormsen, S.Goriely, A.C.Larsen, A.Gorgen, T.W.Hagen, T.Renstrom, S.Siem, N.U.H.Syed, G.Tagliente, H.K.Toft, H.Utsunomiya, A.V.Voinov, K.Wikan

Quasicontinuum γ decay of 91, 92Zr: Benchmarking indirect (n, γ) cross section measurements for the s process

NUCLEAR REACTIONS 92Zr(p, d), E=28 MeV; 92Zr(p, p'), E=17 MeV; measured E(p), I(p), E(d), I(d), Eγ, Iγ, (particle)γ-coin, γ-ray multiplicity measured using SiRi array of silicon telescopes for charged particles and CACTUS array of NaI(Tl) detectors for γ rays at Oslo Cyclotron laboratory (OCL). 91,92Zr; deduced levels, J, π, nuclear level densities (NLDs), E1 and M1 γ-ray strength functions (γSF), l=0 resonances. 90,91Zr(n, γ), E=0.001-1 MeV and kT<0.11 MeV; deduced σ(E) and Maxwellian-averaged cross sections using TALYS code on the basis of the experimental NLDs and γSF in the present work, and compared with available experimental data.

doi: 10.1103/PhysRevC.96.024313
Citations: PlumX Metrics


2017LA06      J.Phys.(London) G44, 064005 (2017)

A.C.Larsen, M.Guttormsen, N.Blasi, A.Bracco, F.Camera, L.Crespo Campo, T.K.Eriksen, A.Gorgen, T.W.Hagen, V.W.Ingeberg, B.V.Kheswa, S.Leoni, J.E.Midtbo, B.Million, H.T.Nyhus, T.Renstrom, S.J.Rose, I.E.Ruud, S.Siem, T.G.Tornyi, G.M.Tveten, A.V.Voinov, M.Wiedeking, F.Zeiser

Low-energy enhancement and fluctuations of γ-ray strength functions in 56, 57Fe: test of the Brink-Axel hypothesis

NUCLEAR REACTIONS 56,57Fe(p, pγ), E=16 MeV; measured reaction products, Ep, Ip, Eγ, Iγ; deduced level densities, γ-ray strength functions.

doi: 10.1088/1361-6471/aa644a
Citations: PlumX Metrics


2016GR08      Phys.Rev. C 94, 014308 (2016)

S.M.Grimes, A.V.Voinov, T.N.Massey

Mass-number and excitation-energy dependence of the spin cutoff parameter

NUCLEAR STRUCTURE A=10-250; calculated spin cutoff parameters σ2 as function of mass number and compared with experimental values deduced from isomeric ratios using microscopic model. Comparison with previous semiempirical calculations. Recommend reanalysis of neutron resonance data for deformed nuclei using a corrected factor to convert s-wave resonance level density to the total level density.

doi: 10.1103/PhysRevC.94.014308
Citations: PlumX Metrics


2016LA11      Phys.Rev. C 93, 045810 (2016)

A.C.Larsen, M.Guttormsen, R.Schwengner, D.L.Bleuel, S.Goriely, S.Harissopulos, F.L.Bello Garrote, Y.Byun, T.K.Eriksen, F.Giacoppo, A.Gorgen, T.W.Hagen, M.Klintefjord, T.Renstrom, S.J.Rose, E.Sahin, S.Siem, T.G.Tornyi, G.M.Tveten, A.V.Voinov, M.Wiedeking

Experimentally constrained (p, γ)89Y and (n, γ)59Y reaction rates relevant to p-process nucleosynthesis

NUCLEAR REACTIONS 89Y(p, p'γ), E=17 MeV; measured E(p), I(p), Eγ, Iγ, γ(θ), pγ-coin using silicon ring (SiRi) array for protons and CACTUS array for γ rays at OSLO cyclotron facility; deduced level density, normalized γ-strength function (γSF) of 89Y, enhancement of γSF due to strong, low-energy M1 transitions at high excitation energies. Comparison with shell-model calculations. 88Sr(p, γ)89Y, E=1.5-5 MeV; 88Y(n, γ)89Y, E=0.01-1.5 MeV; deduced cross sections and astrophysical reaction rates using present data and TALYS code. Comparison of cross-section data with values from the BRUSLIB library. Relevance to p-process nucleosynthesis.

doi: 10.1103/PhysRevC.93.045810
Citations: PlumX Metrics


2015LA08      Acta Phys.Pol. B46, 509 (2015)

A.C.Larsen, S.Goriely, L.A.Bernstein, D.L.Bleuel, A.Bracco, B.A.Brown, F.Camera, T.K.Eriksen, S.Frauendorf, F.Giacoppo, M.Guttormsen, A.Gorgen, S.Harissopulos, S.Leoni, S.N.Liddick, F.Naqvi, H.T.Nyhus, S.J.Rose, T.Renstrom, R.Schwengner, S.Siem, A.Spyrou, G.M.Tveten, A.V.Voinov, M.Wiedeking

Upbend and M1 Scissors Mode in Neutron-rich Nuclei - Consequences for r-process (n, γ) Reaction Rates

doi: 10.5506/APhysPolB.46.509
Citations: PlumX Metrics


2015RA11      Phys.Rev. C 92, 014303 (2015)

A.P.D.Ramirez, A.V.Voinov, S.M.Grimes, Y.Byun, C.R.Brune, T.N.Massey, S.Akhtar, S.Dhakal, C.E.Parker

Level density and mechanism of deuteron-induced reactions on 54, 56, 58Fe

NUCLEAR REACTIONS 54,56,58Fe(d, d), (d, n), (d, p), (d, α), E=5, 7, 9 MeV; measured neutron, protons, deuterons, and α particle spectra, σ(θ, E) at Ohio University tandem accelerator facility. 55,57,59Co, 55,57Fe, 52,54,56Mn; deduced nuclear level densities of the residual nuclei from best fit to compound double differential cross sections, and compared with Gilbert-Cameron model using Iljinov parameter systematics. Comparison with theoretical cross sections using Hartree-Fock-Bogoliubov method (HFBM) and Gilbert-Cameron model (GCM).

doi: 10.1103/PhysRevC.92.014303
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2164.


2015VO17      Phys.Rev. C 92, 064308 (2015)

A.V.Voinov, S.M.Grimes

E1 and M1 γ-strength functions in 144Nd

NUCLEAR REACTIONS 143Nd(n, γ), (n, αγ), E=thermal; analyzed σ(α), σ(γ), summed α widths, E1 and M1 γ-strength functions using available experimental data. Statistical model using Kadmensky-Markushev-Furman (KMF) and standard Lorentz (SLO) functions.

doi: 10.1103/PhysRevC.92.064308
Citations: PlumX Metrics


2014BY06      Phys.Rev. C 90, 044303 (2014)

Y.Byun, A.P.D.Ramirez, S.M.Grimes, A.V.Voinov, C.R.Brune, T.N.Massey

Deuteron-induced reactions on 89Y and nuclear level density of 90Zr

NUCLEAR REACTIONS 89Y(d, d), (d, n), (d, p), E=5, 6, 7.44 MeV; measured deuteron spectra, E(n), I(n), E(p), I(p), σ(E, θ), angle-integrated σ(E) at Ohio University tandem accelerator facility. 90Zr; deduced levels, J, π, configuration, level densities. Comparison with microscopic HFB model calculations using EMPIRE code.

doi: 10.1103/PhysRevC.90.044303
Citations: PlumX Metrics


2014VO07      Nucl.Data Sheets 119, 255 (2014)

A.V.Voinov, S.M.Grimes, C.R.Brune, A.Burger, A.Gorgen, M.Guttormsen, A.C.Larsen, T.N.Massey, S.Siem

Level Density Inputs in Nuclear Reaction Codes and the Role of the Spin Cutoff Parameter

NUCLEAR REACTIONS 57Fe(α, p), E=2-16 MeV; measured Ep, Ip(θ), Eα, Iα(θ) using ΔE-E Si telescope; deduced unnormalized σ; calculated σ using EMPIRE code with different level density models from RIPL-3 database.

doi: 10.1016/j.nds.2014.08.070
Citations: PlumX Metrics


2013LA35      Phys.Rev.Lett. 111, 242504 (2013)

A.C.Larsen, N.Blasi, A.Bracco, F.Camera, T.K.Eriksen, A.Gorgen, M.Guttormsen, T.W.Hagen, S.Leoni, B.Million, H.T.Nyhus, T.Renstrom, S.J.Rose, I.E.Ruud, S.Siem, T.Tornyi, G.M.Tveten, A.V.Voinov, M.Wiedeking

Evidence for the Dipole Nature of the Low-Energy γ Enhancement in 56Fe

NUCLEAR REACTIONS 56Fe(p, X), E=16 MeV; measured reaction products, Eγ, Iγ. 13C, 16,17O, 28Si, 56,57Fe; deduced γ-ray strength function, σ(θ) for the high-energy γ-rays. Comparison with available data.

doi: 10.1103/PhysRevLett.111.242504
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2013RA32      Phys.Rev. C 88, 064324 (2013)

A.P.D.Ramirez, A.V.Voinov, S.M.Grimes, A.Schiller, C.R.Brune, T.N.Massey, A.Salas-Bacci

Nuclear level densities of 64, 66Zn from neutron evaporation

NUCLEAR REACTIONS 63Cu(d, n)64Zn, 65Cu(d, n)66Zn, E=6, 7.5 MeV; measured E(n), I(n), n(θ), σ(E, θ) using TOF technique at Edwards accelerator facility, Ohio University. Analysis by exciton model of nuclear reactions. Comparison with Hauser-Feshbach model calculations using EMPIRE and TALYS computer codes. Tested Fermi gas model, Gilber-Cameron model, and microscopic combinatorial approach with Hartree-Fock-Bogoliubov method (HFBM). 64,66Zn; deduced level densities versus the excitation energy.

doi: 10.1103/PhysRevC.88.064324
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2087.


2013VO12      Phys.Rev. C 88, 054607 (2013)

A.V.Voinov, S.M.Grimes, C.R.Brune, A.Burger, A.Gorgen, M.Guttormsen, A.C.Larsen, T.N.Massey, S.Siem

Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

NUCLEAR REACTIONS 57Fe(α, p)60Co, 59Co(α, p)62Ni, E=21 MeV; 56Fe(7Li, p)62Ni, 55Mn(6Li, p)60Co, E=15 MeV; measured Ep, Ip, double-differential σ(θ); deduced spin cutoff parameter. Comparison with calculations using the EMPIRE reaction code, and different level density models. Excitation energy dependencies found to be inconsistent with the Fermi-gas model.

doi: 10.1103/PhysRevC.88.054607
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2349.


2011AD05      Phys.Rev. C 83, 052801 (2011)

A.S.Adekola, D.W.Bardayan, J.C.Blackmon, C.R.Brune, K.Y.Chae, C.Domizioli, U.Greife, Z.Heinen, M.J.Hornish, K.L.Jones, R.L.Kozub, R.J.Livesay, Z.Ma, T.N.Massey, B.Moazen, C.D.Nesaraja, S.D.Pain, J.F.Shriner Jr, N.D.Smith, M.S.Smith, J.S.Thomas, D.W.Visser, A.V.Voinov

First proton-transfer study of 18F + p resonances relevant for novae

NUCLEAR REACTIONS 2H(18F, n), E=150 MeV; measured α- and 15O-particle spectra. α(15O)-coin, σ(θ), DWBA analysis. 19Ne; deduced levels, J, π, L-transfers, resonances, proton and α-widths. 19Ne-19F mirror symmetry. 18F(p, α)15O; deduced reaction rates. Relevance to nova nucleosynthesis of 18F.

doi: 10.1103/PhysRevC.83.052801
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2687. Data from this article have been entered in the XUNDL database. For more information, click here.


2011AD24      Phys.Rev. C 84, 054611 (2011)

A.S.Adekola, C.R.Brune, D.W.Bardayan, J.C.Blackmon, K.Y.Chae, C.Domizioli, U.Greife, Z.Heinen, M.J.Hornish, K.L.Jones, R.L.Kozub, R.J.Livesay, Z.Ma, T.N.Massey, B.Moazen, C.D.Nesaraja, S.D.Pain, J.F.Shriner, Jr., N.D.Smith, M.S.Smith, J.S.Thomas, D.W.Visser, A.V.Voinov

Single-nucleon transfer reactions on 18F

NUCLEAR REACTIONS 2H(18F, n)19Ne, (18F, p)19F, [secondary 18F beam from 16O(α, np)18F, E=85 MeV primary reaction], E=150 MeV; measured particle spectra, (15O)α-, (15N)α-coin, σ(θ), proton. 19F, 19Ne; deduced levels, J, π, l-values, spectroscopic factors, proton widths, asymptotic normalization coefficients, isospin mirror levels. DWBA analysis of σ(θ) data. Monte-Carlo simulations. Comparison with previous studies.

doi: 10.1103/PhysRevC.84.054611
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1881. Data from this article have been entered in the XUNDL database. For more information, click here.


2011LA05      Phys.Rev. C 83, 034315 (2011); Erratum Phys.Rev. C 97, 094901 (2018)

A.C.Larsen, M.Guttormsen, M.Krticka, E.Betak, A.Burger, A.Gorgen, H.T.Nyhus, J.Rekstad, A.Schiller, S.Siem, H.K.Toft, G.M.Tveten, A.V.Voinov, K.Wikan

Analysis of possible systematic errors in the Oslo method

NUCLEAR REACTIONS 50V, 117Sn, 160,164Dy(3He, α), E not given; 50V, 160,162,164Dy(3He, 3He'), E not given; 46Ti(p, p'), E=15-32 MeV; analyzed previous experimental data and simulated data for particle and γ spectra, (particle)γ-coin, γ-ray transmission coefficients and strength functions, level densities. 56,57,58Fe, 96,97,98Mo(3He, 3He'); analyzed first generation matrix, parity distributions. Analysis of systematic errors in Oslo method for the simultaneous extraction of the level density and γ-ray transmission coefficient from (particle)γ-coincidence data.

doi: 10.1103/PhysRevC.83.034315
Citations: PlumX Metrics


2011VO06      Phys.Rev. C 83, 054605 (2011)

A.V.Voinov, S.M.Grimes, C.R.Brune, A.Burger, A.Gorgen, M.Guttormsen, A.C.Larsen, T.N.Massey, S.Siem, C.Kalbach

Equilibrium and pre-equilibrium processes in the 55Mn(6Li, x p) and 57Fe(α, x p) reactions

NUCLEAR REACTIONS 55Mn(6Li, xp), (6Li, xn), E=15 MeV; 57Fe(α, xp), E=30 MeV; measured neutron, proton and scattered α-particle spectra, cross sections, angular distributions. Comparison with calculations performed using the exciton pre-equilibrium model and Hauser-Feshbach evaporation model.

doi: 10.1103/PhysRevC.83.054605
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1841.


2009OG06      Phys.Rev. C 80, 034305 (2009)

B.M.Oginni, S.M.Grimes, A.V.Voinov, A.S.Adekola, C.R.Brune, D.E.Carter, Z.Heinen, D.Jacobs, T.N.Massey, J.E.O'Donnell, A.Schiller

Test of level density models from reactions of 6Li on 58Fe and 7Li on 57Fe

NUCLEAR REACTIONS 58Fe(6Li, X), E=15 MeV; 57Fe(7Li, X), E=15 MeV; measured particle spectra, σ, angular distributions; deduced optical model parameters. 60Co, 63Ni; deduced level densities. Comparison with Hauser-Feshbach model calculations.

doi: 10.1103/PhysRevC.80.034305
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1749.


2009VO02      Phys.Rev. C 79, 031301 (2009)

A.V.Voinov, B.M.Oginni, S.M.Grimes, C.R.Brune, M.Guttormsen, A.C.Larsen, T.N.Massey, A.Schiller, S.Siem

Nuclear excitations at constant temperature

NUCLEAR REACTIONS 55Mn(6Li, X), (7Li, X), E=15 MeV; 59Co(d, p), (d, α), E=7.5 MeV; measured neutron and proton evaporation spectra, α spectra, σ. Hauser-Feshbach analysis. Comparison with predictions of constant temperature, Fermi-gas, and Hartree-Fock-BCS models.

doi: 10.1103/PhysRevC.79.031301
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1685.


2008VO02      Phys.Rev. C 77, 034613 (2008)

A.V.Voinov, S.M.Grimes, A.C.Larsen, C.R.Brune, M.Guttormsen, T.Massey, A.Schiller, S.Siem, N.U.H.Syed

Level densities of 44Sc and 47Ti from different experimental techniques

NUCLEAR REACTIONS 45Sc(3He, α), (3He, p), E=11 Mev; measured Eγ, Iγ, particle spectra, α particle angular distributions; deduced level density, αγ-coin. 44Sc, 47Ti; deduced level density. Comparison with theory.

doi: 10.1103/PhysRevC.77.034613
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1613.


2007VO08      Phys.Rev. C 76, 044602 (2007)

A.V.Voinov, S.M.Grimes, C.R.Brune, M.J.Hornish, T.N.Massey, A.Salas

Test of nuclear level density inputs for Hauser-Feshbach model calculations

NUCLEAR REACTIONS 59Co(d, n), (d, p), (d, α), 58Fe(3He, n), (3He, p), (3He, α)61Ni, E=7.5, 10 MeV; measured neutron, proton and α particle spectra, reaction cross sections. 57Fe, 60Ni, 60Cu; deduced level densities.

doi: 10.1103/PhysRevC.76.044602
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2597.


2006SC17      Phys.Rev. C 74, 017305 (2006)

A.Schiller, A.V.Voinov, E.Algin, L.A.Bernstein, P.E.Garrett, M.Guttormsen, R.O.Nelson, J.Rekstad, S.Siem

Primary versus secondary γ intensities in 171Yb(nth, γ)

NUCLEAR REACTIONS 171Yb(n, γ), E=thermal; measured Eγ, Iγ, γγ-coin; deduced primary and secondary γ intensities.

doi: 10.1103/PhysRevC.74.017305
Citations: PlumX Metrics


2006VO06      Phys.Rev. C 74, 014314 (2006)

A.V.Voinov, S.M.Grimes, U.Agvaanluvsan, E.Algin, T.Belgya, C.R.Brune, M.Guttormsen, M.J.Hornish, T.Massey, G.E.Mitchell, J.Rekstad, A.Schiller, S.Siem

Level density of 56Fe and low-energy enhancement of γ-strength function

NUCLEAR REACTIONS 55Mn(d, n), E=7 MeV; measured En, σ(E, θ). 56Fe deduced level density, γ-strength function.

doi: 10.1103/PhysRevC.74.014314
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1463.


2004VO17      Yad.Fiz. 67, 1891 (2004); Phys.Atomic Nuclei 67, 1866 (2004)

A.V.Voinov, A.Schiller, E.Algin, L.A.Bernstein, P.E.Garrett, M.Guttormsen, R.O.Nelson, J.Rekstad, S.Siem

Nature of the Pygmy Resonance in Continuous γ Spectra

NUCLEAR REACTIONS 171Yb(n, γ), E=thermal; measured Eγ, Iγ, γγ-coin; deduced pygmy resonance energy, width.

doi: 10.1134/1.1811192
Citations: PlumX Metrics


2003VO05      Yad.Fiz. 66, 47 (2003); Phys.Atomic Nuclei 66, 44 (2003)

A.V.Voinov, D.G.Serov, Yu.P.Popov, N.A.Gundorin, A.P.Kobzev, S.S.Parzhitski

Measurements of the Partial Cross Section for the Reaction 48Ti(n, γ1)49Ti and Estimation of the Radiative Strength Functions for E1 and M1 Transitions

NUCLEAR REACTIONS 48Ti(n, γ), E=10-120 keV; measured Eγ, σ(E); deduced resonance parameters. 48Ti deduced radiative strength functions.

doi: 10.1134/1.1540655
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset41437.


2001PO13      Nucl.Instrum.Methods Phys.Res. A463, 309 (2001)

Yu.P.Popov, A.V.Voinov, P.V.Sedyshev, S.S.Parzhitsky, A.P.Kobzev, N.A.Gundorin, D.G.Serov, M.V.Sedysheva

Neutron Spectrometry Method for Partial Radiative Capture Cross-Section Measurements

NUCLEAR REACTIONS 58Ni(n, γ), E ≈ 10-90 keV; measured Eγ, Iγ; deduced σ(E), resonance parameters.

doi: 10.1016/S0168-9002(01)00258-3
Citations: PlumX Metrics


2000PO08      Yad.Fiz. 63, No 4, 583 (2000); Phys.Atomic Nuclei 63, 525 (2000)

Yu.P.Popov, A.V.Voinov, S.S.Parzhitsky, N.A.Gundorin, D.G.Serov, A.P.Kobzev, P.V.Sedyshev

Measurements of a Partial Cross Section for the Reaction 58Ni(n, γ0)59Ni

NUCLEAR REACTIONS 58Ni(n, γ), E=10-120 keV; measured Eγ, σ, neutron resonance parameters, radiative strength function. Comparison with other measurements.

doi: 10.1134/1.855662
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset41351.


1998KH15      Bull.Rus.Acad.Sci.Phys. 62, 1701 (1998)

Yu.V.Kholnov, A.V.Voinov

Increasing the Resolution in Coincidence Spectra of Different Radiations


1996VA23      Bull.Rus.Acad.Sci.Phys. 60, 1695 (1996)

E.V.Vasilieva, A.V.Voinov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov

Features of Cascade γ-Decay of the 170Tm Compound State Excited by Thermal Neutron Capture

NUCLEAR REACTIONS 169Tm(n, γ), E=thermal; measured Eγ, Iγ, γγ-coin. 170Tm deduced levels, level density, cascade intensities related features. Model comparisons.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset41472.


1996VA24      Bull.Rus.Acad.Sci.Phys. 60, 1706 (1996)

E.V.Vasilieva, A.V.Voinov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov

Cascades of γ Transitions in the 200Hg Nucleus at a Thermal Neutron Capture by 199Hg Nucleus

NUCLEAR REACTIONS 199Hg(n, γ), E=thermal; measured Eγ, Iγ, γγ-coin. 200Hg deduced levels, level density, cascade relative intensities related features, possible resonance effects. Model comparisons.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset41473.


1996VA25      Bull.Rus.Acad.Sci.Phys. 60, 1710 (1996)

E.V.Vasilieva, A.V.Voinov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov

Two-Quantum Cascades at a Thermal Neutron Capture in 114Cd

NUCLEAR REACTIONS 113Cd(n, γ), E=thermal; measured Eγ, Iγ, γγ-coin. 114Cd deduced levels, level density, cascade relative intensities related features, possible vibrational structure. Model comparisons.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset41478.


1995BO20      Nucl.Phys. A589, 293 (1995)

S.T.Boneva, V.A.Khitrov, A.M.Sukhovoj, A.V.Vojnov

Excitation Study of High-Lying States of Differently Shaped Heavy Nuclei by the Method of Two-Step Cascades

NUCLEAR STRUCTURE 164Dy, 168Er, 174Yb, 137,138,139Ba, 146Nd, 150Sm, 156,158Gd, 160Tb, 181Hf, 196Pt, 198Au; analyzed Eγ, Iγ, γγ-coin, two-step cascades, cascade intensities. Statistical model comparisons.

doi: 10.1016/0375-9474(95)00122-H
Citations: PlumX Metrics


1995BO41      Bull.Rus.Acad.Sci.Phys. 59, 728 (1995)

S.T.Boneva, E.V.Vasilieva, A.V.Voinov, A.M.Sukhovoy, V.A.Khitrov, Yu.V.Kholnov

Specific Features of Cascade γ-Decay of a Compound State in 198Au Nucleus Excited by Capture of Thermal Neutrons

NUCLEAR REACTIONS 197Au(n, γ), E=thermal; measured γγ-coin following capture. 198Au deduced decay scheme.


1995GE02      Phys.Lett. 351B, 82 (1995)

R.Georgii, P.von Neumann-Cosel, T.von Egidy, M.Grinberg, V.A.Khitrov, J.Ott, P.Prokofev, A.Richter, W.Schauer, C.Schlegel, R.Schulz, L.J.Simonova, Ch.Stoyanov, A.M.Sukhovoj, A.V.Voinov

Unusual Neutron-Capture Gamma-Ray Cascade in 124Te: A fingerprint of octupole-coupled multiphonon states

NUCLEAR REACTIONS 123Te(n, γ), E=thermal; measured γγ-coin, Eγ, Iγ. 124Te(γ, γ'), E=3.5 MeV bremsstrahlung; measured Eγ, Iγ. 124Te deduced levels, transitions, B(λ), configuration. Quasiparticle-phonon model.

doi: 10.1016/0370-2693(95)00400-F
Citations: PlumX Metrics


1995GE06      Nucl.Phys. A592, 307 (1995)

R.Georgii, T.von Egidy, J.Klora, H.Lindner, U.Mayerhofer, J.Ott, W.Schauer, P.von Neumann-Cosel, A.Richter, C.Schlegel, R.Schulz, V.A.Khitrov, A.M.Sukhovoj, A.V.Vojnov, J.Berzins, V.Bondarenko, P.Prokofjevs, L.J.Simonova, M.Grinberg, Ch.Stoyanov

Complete Level Scheme of 124Te up to 3 MeV

NUCLEAR REACTIONS 123Te(d, p), E=22 MeV; 125Te(d, t), E=22 MeV; 123Sb(3He, d), E=33 MeV; 124Te(p, p'), E=24 MeV; measured particle spectra. 123Te(n, γ), E=thermal; measured Eγ, Iγ, γγ-coin. 124Te(γ, γ'), E=3.5, 5 MeV; measured Eγ. 124Te deduced levels, γ-multipolarity, branching ratios, Γ0, Γ1, T1/2. Quasiparticle-phonon model calculation.

doi: 10.1016/0375-9474(95)00311-N
Citations: PlumX Metrics


1995VA40      Bull.Rus.Acad.Sci.Phys. 59, 1815 (1995)

E.V.Vasilieva, A.V.Voinov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov

Investigation of 146Eu → 146Sm Decay Scheme by the γγ Coincidence Method with Summation of Amplitudes of Coinciding Pulses

RADIOACTIVITY 146Eu(β+), (EC); measured γγ-coin. 146Sm deduced levels, J, π, γ transitions.


1995VA41      Bull.Rus.Acad.Sci.Phys. 59, 1889 (1995)

E.V.Vasilieva, A.V.Voinov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov

Two-Quantum Cascades in Decay of the Compound State of 192Ir Nucleus Excited by Capture of Thermal Neutrons

NUCLEAR REACTIONS 191Ir(n, γ), E=thermal; measured Eγ, Iγ. 192Ir deduced γ-transitions, two-quantum cascades.


1995VA42      Bull.Rus.Acad.Sci.Phys. 59, 1902 (1995)

E.V.Vasilieva, A.V.Voinov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov

Cascade γ-Decay of the Compound State of 160Tb Nucleus

NUCLEAR REACTIONS 159Tb(n, γ), E=thermal; measured γγ-coin. 160Tb deduced two-quantum cascades Iγ.


1994AL41      J.Phys.(London) G20, 1943 (1994)

M.A.Ali, V.A.Khitrov, Yu.V.Kholnov, A.M.Sukhovoj, A.V.Voinov

Properties of the 158Gd Compound State Gamma-Decay Cascades

NUCLEAR REACTIONS 157Gd(n, γ), E=thermal; measured Eγ, Iγ, γγ-coin, two-step cascades. 158Gd deduced levels, level densities, cascade Iγ. Model comparison.

doi: 10.1088/0954-3899/20/12/010
Citations: PlumX Metrics


1994AL50      Bull.Rus.Acad.Sci.Phys. 58, 1889 (1994)

M.A.Ali, E.V.Vasilieva, A.V.Voinov, O.D.Kestarova, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov

Cascade γ-Decay of the 196Pt Compound State Excited by Capture of Thermal Neutrons in 195Pt

NUCLEAR REACTIONS 195Pt(n, γ), E=thermal; measured Eγ, Iγ. 196Pt deduced giant magnetic dipole resonance role in cascaded γ-decay.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset41474.


1994VA44      Bull.Rus.Acad.Sci.Phys. 58, 1896 (1994)

E.V.Vasilieva, A.V.Voinov, O.D.Kestarova, Yu.P.Popov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov

Cascade γ-Decay of the 124Te Compound State Excited by Thermal Neutron Capture

NUCLEAR REACTIONS 123Te(n, γ), E=thermal; measured Eγ, Iγ. 124Te deduced levels, cascade decay characteristics.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset41468.


1993VA02      Yad.Fiz. 56, No 2, 13 (1993); Phys.Atomic Nuclei 56, 154 (1993)

E.V.Vasileva, A.V.Voinov, V.D.Kulik, Yu.P.Popov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov, V.N.Shilin

Method for Analyzing the Nonstatistical Behavior of the Radiative Strength Function in the Capture of Thermal and Resonance Neutrons

NUCLEAR REACTIONS 174Yb, 168Er, 178Hf(n, γ), E=thermal, 2 keV; analyzed Iγ. 175Yb, 169Er deduced significant deviations from mean statistical values for radiative strength function.


1993VA13      Bull.Rus.Acad.Sci.Phys. 57, 1549 (1993)

E.V.Vasilieva, A.V.Voinov, V.D.Kulik, Yu.P.Popov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov, V.N.Shilin

New Procedure for Subtraction of Compton Background in γγ-Coincidences by Summation of Amplitudes of Coinciding Pulses

RADIOACTIVITY 170Lu(EC), (β+); analyzed γγ-coin analyses methods; deduced two-step subtraction advantages.


1993VA14      Bull.Rus.Acad.Sci.Phys. 57, 1582 (1993)

E.V.Vasilieva, A.V.Voinov, O.D.Kestarova, V.D.Kulik, Yu.P.Popov, A.M.Sukhovoi, V.A.Khitrov, Yu.V.Kholnov, V.N.Shilin

Possible Equidistance of Nuclear Excitation Energies

NUCLEAR STRUCTURE A=143-187; analyzed two-quantum cascade intensities; deduced possible equidistance of intermediate levels.


1993VA15      Bull.Rus.Acad.Sci.Phys. 57, 1591 (1993)

E.V.Vasilieva, A.V.Voinov, O.D.Kestarova, V.D.Kulik, A.M.Sukhovoi, Yu.V.Kholnov, V.N.Shilin

Two-Quantum Cascades in the Capture of Thermal Neutrons by 149Sm Nuclei

NUCLEAR REACTIONS 149Sm(n, γ), E=thermal; measured γγ-coin spectra, two-quantum cascades; deduced shape feature implications. 150Sm deduced cascade intensity to two low-lying levels. Other data input.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset41460.


1993VA16      Bull.Rus.Acad.Sci.Phys. 57, 1749 (1993)

E.V.Vasilieva, A.V.Voinov, O.D.Kestarova, V.D.Kulik, A.M.Sukhovoy, V.A.Khitrov, Yu.V.Kholnov, V.N.Shilin

Cascade γ-Decay of a Compound State of 156Gd

NUCLEAR REACTIONS 155Gd(n, γ), E=thermal; measured Eγ, Iγ, γγ-coin double quantum cascades. 156Gd deduced resonances, weakly pronounced quasiparticle nature.


1993VA17      Bull.Rus.Acad.Sci.Phys. 57, 1758 (1993)

E.V.Vasilieva, A.V.Voinov, O.D.Kestarova, V.D.Kulik, A.M.Sukhovoy, V.A.Khitrov, Yu.V.Kholnov, V.N.Shilin

Intense Two-Quantum Cascades and the Decay Scheme of the 164Dy Compound State

NUCLEAR REACTIONS 163Dy(n, γ), E=thermal; measured Eγ, Iγ double quantum cascades. 164Dy deduced transitions, branching ratio.


1991BO14      Z.Phys. A338, 319 (1991)

S.T.Boneva, V.A.Khitrov, A.M.Sukhovoj, A.V.Voinov

Intensities of Two-Quanta Cascades at Different Excitation Energies of Compound Nuclei 146Nd, 174Yb and 183W

NUCLEAR REACTIONS 145Nd, 173Yb, 182W(n, γ), E=reactor; analyzed cascade Iγ. 146Nd, 174Yb, 183W deduced two-quanta cascade energy dependence.

doi: 10.1007/BF01288196
Citations: PlumX Metrics


1989BO53      Izv.Akad.Nauk SSSR, Ser.Fiz. 53, 2092 (1989); Bull.Acad.Sci.USSR, Phys.Ser. 53, No.11, 29 (1989)

S.T.Boneva, E.V.Vasileva, A.V.Voinov, Yu.P.Popov, A.M.Sukhovoi, V.A.Khitrov

Intense Two-Quantum Cascades and Decay Scheme of Compound State of 174Yb

NUCLEAR REACTIONS 173Yb(n, 2γ), E not given; measured cascade Eγ, Iγ. 174Yb levels deduced decay features, J, π.


1989BO55      Izv.Akad.Nauk SSSR, Ser.Fiz. 53, 2401 (1989); Bull.Acad.Sci.USSR, Phys.Ser. 53, No.12, 124 (1989)

S.T.Boneva, E.V.Vasileva, A.V.Voinov, Yu.P.Popov, A.M.Sukhovoi, V.A.Khitrov

γ-Decay of the Compound State of 146Nd from the 145Nd(n, 2γ) Reaction Initiated by Thermal Neutrons

NUCLEAR REACTIONS 145Nd(n, γ), E=thermal; measured γγ-coin spectra, amplitude summation. 146Nd levels deduced double-γ cascade intensities.


Back to query form


Note: The following list of authors and aliases matches the search parameter A.V.Voinov: A.V.VOINOV, A.V.VOJNOV