USNDP, BNL, Nov. 4, 2009

Nuclear Reaction Code Development at LANL

T. Kawano, P. Talou, M.B. Chadwick, T. Watanabe, P. Möller, S. Holloway, O. Bouland, J.E. Lynn *Nuclear and Particle Physics, Astrophysics and Cosmology, LANL*

Introduction

Theory and Model Code Development at LANL

- Hauser-Feshbach code development for nuclear data evaluation,
 - Coupled-Channels + Hauser-Feshbach calculations
 - Fission modeling, class-I class-II state coupling
- and other possible applications
 - β -delayed neutron and γ -ray emission
 - Monte Carlo technique
 - to understand nuclear reaction mechanisms
 - MC simulation for prompt fission neutron spectra
 - γ -ray emission event generator for transport simulations
- Nuclear reactions based on microscopic nuclear strucutre theory
 - Quantum mechanical pre-equilibrium process
 - Hartree-Foch BCS direct/semidirect capture process
 - proton capture, odd-Z target calculation

CoH: Optical Model and Hauser-Feshbach Model

New Hauser-Feshbach codes at Los Alamos

- CoH₃: C++ code with the spherical optical model, coupled-channels, DWBA, direct/semidirect capture, two-component exciton model, and multi-stage compound nucleus decay
- Internal T calculation (no ECIS contamination)
- A variant, CGM Monte Carlo γ -ray cascading code available

The CGM Codel

CGM: Cascading Gamma-ray and Multiplicity, ver.3.0 (Amalthea)

- Subset of CoH₃
- A portable code for combining with other code systems
 - CINDER, Monte Carlo prompt fission neutron spectrum

CGM Example: Neutron and Gamma Spectra

Beta-Delayed Neutron and Gamma Spectra: Cs-145

 γ -ray multiplicity = 3.04

average γ energy = 973 keV

CoH Example: Monte Calro Hauser-Feshbach

Neutron Emission as a Coincidence with a particular Gamma-ray Neutron emissions gated on the $2^+ \rightarrow 0^+$ transition

Fission Modeling at LANL

Treatment of Underlying Intermediate Structure (UIS)

Accurate calculations of intermediate structure (IS) average cross section are now available using MC calculations based on the microsopic R-matrix theory with the underlying I.S (UIS).

UIS: Lower significantly the average fission cross section

HF-BCS and CoH for Proton Capture

Direct/Semidirect Capture based on Hartree-Fock BCS

CNR*09 talk by T. Watanabe

Concluding Remarks

Model Code Development and Plans

- A new Hauser-Feshbach code, CoH₃
 - Monte Carlo approach to compound nucleus decay
 - ENDF-6 format conversion program (ETYPE under development)
- CGM, neutron and γ -ray emission from compound nucleus
 - β -delayed neutron and γ -ray emission
 - calculation of prompt γ -ray energy release
 - apply to decay heat calculation with CINDER
- Fission modeling
 - collaboration with LLNL under ARRA
- Proton capture Hartree-Fock BCS
- Monte Calro prompt fission neutron spectrum calculation

This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

