

Status of ETOE-2/MC²-2/SDX Code System for Multi-Group Cross Section Generation for Fast System Analyses

2009 CSEWG Meeting November 4, 2009 Brookhaven National Laboratory

Won Sik Yang and Changho Lee Nuclear Engineering Division Argonne National Laboratory

New Multi-group Cross Section Generation Code MC²-3

- Developed MC²-3 by rebuilding the legacy codes MC²-2 and SDX and incorporating the new methodologies
- Ultrafine group (2082 groups) transport calculations
 - Homogeneous mixture, and 1-D slab and cylindrical geometries
 - Resolved resonance self-shielding with numerical integration of point-wise cross sections using the narrow resonance (NR) approximation
 - Unresolved resonance self-shielding with the generalized resonance integral method
 - Elastic scattering transfer matrices obtained with numerical integration of isotopic scattering kernel in ENDF/B data
- Hyperfine group (pointwise XS) transport capability
 - Consistent P₁ transport calculation for entire resolved resonance energy range (up to ~1 MeV for structural materials) with anisotropic scattering sources
 - Optionally used for accurate resolved resonance self-shielding and scattering transfer matrix generation
- Being integrated with 2-D MOC transport solver

MC²-3 Code (Cont'd)

- Efficient strategy to generate accurate multi-group cross sections for heterogeneous assembly or full-core calculations is being developed by combining various solution options
 - 1-D hyperfine group cell calculation
 - 1-D ultrafine group whole-core calculation (with homogenized regions)
 - 1-D CPM or MOC calculation
 - 2-D MOC calculation in several hundred groups

Integration of MC²-3 into UNIC

Scalability of UNIC's SN2ND Solver

Hyperfine-Group Spectrum Calculation

Inner core composition of ZPR-6 Assembly 6A

Hyperfine-Group vs. Ultra-Fine-Group Spectra

 Hyperfine group transport calculation with or without anisotropic scattering source contribution in the Center-of-Mass system

Criticality Benchmarks (UFG Calculation)

- LANL critical assemblies, ZPR-6, ZPPR-15, BFS, and Monju
- Multiplication factors are in an excellent agreement within \sim 200 pcm Δk

Preliminary Analyses of MONJU Startup Tests

- Assembly averaged 230-group cross sections at different temperatures
 - 1D Heterogeneous calculations for 10 fuel, blanket and control assembly regions
 - Homogeneous medium calculations for 21 structure regions
- Nodal transport calculations with VARIANT

Fully inserted	Fully withdrawn C1 Rod	C1 Rod Worth (%Ao)	C/E
0.99033	1.00021	0.997	1.025

C1 withdrawal length (mm)	195.7 ⁰C	302.5 ⁰C	%∆р/ °С	C/E
442	0.99843	0.99521	-0.00311	1.032
703	1.00170	0.99844	-0.00313	1.038

* Measurement uncertainty: 5%

Future Work

- Further optimization to reduce memory requirement and computational time
- Further validation of 1-D and 2-D MOC solvers
- Parallel execution
- Finalize cross section storage procedure for use in coupled physics calculations
 - HDF5 format which supports random access retrieval of cross section data in massively parallel environments
- Seamless coupling with UNIC for online cross section generation