Decay studies including β-delayed neutron emission at the HRIBF K. P. Rykaczewski (Physics Division, ORNL)

among our motivations :

- understanding the evolution of nuclear structure

 beta-decay properties are needed for the analysis of post r-process isotopic distributions (in particular the data around "waiting-point" nuclei) half-lives, beta-delayed neutron rates, low-energy isomers ...

 the decay properties of fission products are among the parameters needed for the operation of nuclear reactors, e.g., during a shut-down process, and for the nuclear spent fuel/nuclear waste handling

an example of a complex decay for neutron-rich isotope, from HRIBF proposal by S.Liddick et al., "Gamow-Teller vs First Forbidden β -decays of Br isotopes"

Decay studies of neutron-rich nuclei at onribf (Oak Ridge)

HRIBF high-resolution RIB injector magnet ($\Delta M/M \sim 1: 10^4$)

from initial rate of post-accelerated A=76 isobars ~ 10^5 pps to " \overrightarrow{B} -optimized" rate of ~ pure $^{76}Cu\overline{}$ ~ 220 pps

J.A. Winger et al., Phys. Rev. Letters, 102, 142502, 2009

Graphics Window 06-Dec-06 11:04:47 373 ^{76}Zn **P**_n=7.2(5)% 10000 199 keV γ 228 199 75Zn ⁷⁶Zn 75 Zn ⁷⁶Cu 1000 228 keV 0.64s **no Zn** in separated beam, Cu ions identified and counted ! 440 480 360

digital data acquisition – XIA DGFs and Pixie16

e.g., recent ISOLDE measurement did not detect bn-branch compare Van Roosbroeck et al., Phys. Rev. C 71, 054307 (2005)

 $^{77}Cu \rightarrow ^{77m}Zn \rightarrow ^{77gs}Ga$

nrib

J.A. Winger et al., *Phys. Rev. Letters*, 102, 142502, 2009

OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

HRIBF exp: factor 2 to 5 higher P_n values in comparison to the "current βn-references" e.g., B. Pfeiffer, K.-L. Kratz, P. Möller (PKM) Prog. Nucl. Energy, 41, 5 (2002)

HRIBF exp: well above the calculated βn-values I.N. Borzov, Phys.Rev. C71, 065801, 2005 (interesting ⁸³Ga story !)

OAK RIDGE NATIONAL LABORATORY U.S. Department of Energy

New βn-calculations of Borzov closer to the HRIBF "reference values" ! New modeling accounts for :

- new mass measurements Hakala et al., PRL 101, 052502, 2008

- an inversion of proton orbitals occurring near ⁷⁸Ni, from $2p_{3/2}$ to $1f_{5/2}$ (Z=29 ^{76,77,78}Cu and Z=31 ⁸³Ga), see K. Flanagan et al, Phys. Rev. Lett., 103, 142501, 2009 what are the differences in $Q_{\beta} - S_n$ values "NEW" – OLD (AME2003) ? ⁷⁶Cu : +2.7 keV ⁷⁷Cu : +163 keV ⁷⁸Cu : + 68 keV ⁸³Ga : -73 keV

proton orbital inversion plays an important role in Borzov's calculations!

Low-energy Radioactive Ion Beam Spectroscopy Station LeRIBSS

Factor 20 to 1000 improvement in RIBs intensity in comparison to "ranging-out" experiments with postaccelerated beams [no Tandem – 10, no Charge Exchange – 2++ for Cu, Ga – 10x20=200)] negative AND positive ~ 200 keV ions from IRIS-1 and 250 keV from IRIS-2 profiting from all HRIBF beam purification methods (except "ranging-out") ultra-thin foil MCP : time correlations with implanted ions (D.Shapira,C.J Gross..)

LeRIBSS successfully commissioned in July 2008,

UT-BATTELLE Oak Ridge National Laboratory

Oak Ridge has a unique ISOL facility :

high-resolution isobar separator operating with 200 keV beams and Micro-Channel Plate (MCP) detector allowing for ion tagging and counting

single isobar

ion beam

movable tape collector surrounded by radiation detectors β, γ , electron, neutron ...

5 μg/cm², 8 mm diameter Carbon foil plus small MCP detector **Dan Shapira** (ORNL), Steven Padgett (UTK) et al.,

HRIBF exp by S. Liddick (UTK), S. Padgett (UTK,PhD) et al.,

Decays of ⁷⁹Zn, ⁸⁰Zn and ⁸¹Zn *positive ions* were studied at LeRIBSS at the end of July 2008.

The quality of our data is illustrated below by comparing our on-line ⁸¹Zn results to the measurement done at PARRNe facility at Orsay (France) by Verney et al, PRC76, 054312, 2007

b f pure ⁸¹Zn beam \rightarrow T_{1/2} (⁸¹Zn)= 315(18) ms

 $T_{1/2}$ =290(50) ms, β-delayed neutrons, K.-L. Kratz et al, Zeit. Phys. A340, 419, 1991 $T_{1/2}$ = 391(65) ms, 351 keV γ-line, D. Verney et al., Phys. ReV. C76, 054312, 2007

we will use this beam on-off technique for the identification of βn-decay pattern for most n-rich nuclei : ^{81,82}Cu (RIB-180), ⁸⁶Ge (RIB-128) and ⁸⁷Ga (RIB-181), and hopefully for even more exotic ones (beyond ~ ⁸¹Zn, ⁸⁸As, ⁹⁴Br...)

3Hen

Digital beta-delayed neutron detector ³Hen

OAK RIDGE NATIONAL LABORATORY

new equipment enhancing our LeRIBSS and "ranging-out" capabilitities

nearly 80% efficient and segmented ³Hen neutron counter

Neutron Efficiency by Ring

ORNL LSU , Mississippi UTK, UNIRIB HRIBF, Long-counter, and NERO Neutron Efficiency

from NNDC :

energy window ($Q_{\beta} - S_{n}$) for β -delayed neutron emission precursors

blue color – β n emission not possible green color – 3Hen **I**_{β n} measurements of low energy β n's

OAK RIDGE NATIONAL LABORATORY

Collaborators :

ORNL : C.J. Gross, D. Shapira

UT Knoxville : **R.K.Grzywacz**, C.R.Bingham, S. Liddick, I. Darby, L. Cartegni, M. Rajabali, S. Padgett, M. Madurga, D. Miller, S.Paulaskas

Warszawa : A. Korgul, M.Karny

Mississippi : J. A. Winger, S.Ilyushkin

Lousiana (LSU) : Ed Zganjar, A. Piechaczek UNIRIB : J.C. Batchelder

Nashville (Vanderbilt) : J.H. Hamilton, S. Liu et al.,

Kraków: W. Królas, Łódz: J. Perkowski

Milano : Ch. Mazzocchi

LeRIBSS : T.Mendez, C.Reed, Ed Zganjar, R.Juras, D.Dowling, J.Johnson

Beta-decay (β -delayed neutrons) studies at the HRIBF

- High energy-resolution studies with pure beams of known intensities ranging-out technique plus gamma-beta-conversion electron detectors reliable basic decay scheme + βn-branching ratio
- 2. Measurements with **3Hen** neutron detector array and ranging-out

- measurements of β n-branching-ratio for low energy neutron emitters (0.01 MeV to ~ 1 MeV neutrons, β n branching ratio below 1 %, e.g., ⁷³Cu, ⁷⁴Cu)

- discovery experiments for short-lived (~ 50 ms) nearly 100% βn-emitters
- 3. measurements with VANDLE time-of-flight neutron detector neutron energy vs intensity spectrum
- 4. Total Gamma Absorption Spectroscopy with Modular TAS

new project : Oak Ridge Isomer Separator and Spectrometer (ORISS) K.Carter, A.Piechaczek, E.F.Zganjar, J.C.Batchelder and UNIRIB

based on the Multi-pass Time of Flight principle

∆M/M ~ 1: 400,000 !! efficiency ~ 50%