

Thermal neutron capture in Gd isotopes

H. D. Choi[†], M. S. Basunia, R. B. Firestone Lawrence-Berkeley National Laboratory

B. Sleaford, N. Summers, D. Dashdorj, J. Escher, A. Hurst Lawrence-Livermore National Laboratory

> **Zs. Revay, T. Belgya** Institute of Isotopes, Budapest

M. Krticka Charles University, Prague

[†]On leave from; Seoul National University, Seoul, Korea (south)

Goals: DiceBox model calculations Input : EGAF-RIPL3 data on levels, deexcitation & primary gammas, partial gamma cross sections $\sigma_{i\gamma f}$ Model level densities. PSFs. lcc's Output: Level populations, errors (from all) Level populations, errors (from quasi-continuum) Capture cross section :

 $\sigma_{\gamma 0} = \sum \sigma_{\gamma}^{exp}(gs) + \sum \sigma_{\gamma}^{sim}(gs)$

1. Introduction

DiceBox Physics

Compound nucleus decay : Extreme Statistical Model

see F. Becvar, NIM in Phys. Res. A 417 (1998) 434-449 $\rightarrow \downarrow$

Partial radiative width $(i \rightarrow f)$

$$\Gamma_{i\gamma f} = \sum_{X,L} y_{XL}^2 \frac{f^{(XL)}(E_{\gamma},\xi)E_{\gamma}^{2L+2}}{\rho(E_i,J_i,\pi_i)}$$

Total radiative width (of level-i)

$$\Gamma_{i\gamma} = \sum_{f} \Gamma_{i\gamma f}$$

Branching Intensity (from the given level-i)

$$I_{i\gamma f} = \Gamma_{i\gamma f} / \Gamma_{i\gamma}$$

Fig. 1. Schematic description of random cascading.

1. Introduction

□ Auxiliary Software

- Depopulation intensity (for each discrete levels below E_{cut})
 INPUT : EGAF data file & DiceBox input data (from RIPL etc.)
 Output : Abs. gamma intensities (& errors) per capture
 Primary gamma intensities (& errors) written into DiceBox input file
- x-y Plot of Population and Depopulation intensities

Population intensities (y) from DiceBox simulation (models) Depopulation intensities (x) from EGAF file (capture- γ experimental dataset) Quality-of-fit = reduced chi-square (χ^2/ν)

$$= \chi^2 / \nu = \frac{1}{\nu} \sum_{i=1}^{\nu} \frac{(x_i - y_i)^2}{(\delta x_i)^2 + (\delta y_i)^2}$$

If all $x_i = y_i$, chi-square is zero !!

2. DiceBox Runs

□ Method & policy of simulations

- M. Krticka et al. Phys. Rev. C77 (2008) on Pd isotopes
- Level Density Models
 - 1) CTF (Constant Temperature Formula)
 - 2) BSFG (Back-Shifted Fermi Gas)
 - 3) Composite (Gilbert-Cameron)
 - Comparison with exp. data :

No. of discete low-energy levels,

Ave. resonance spacing around neutron separation energy $(B_n) = D_0$

- E1 Photon Strength Function Models
 - 1) BA (Brink-Axel)2) GLO (Generalized Lorentzian)
 - 3) EGLO (Enhanced GLO) 4) KMF (Kadmensky-Markushev-Furman)
 - 5) GFL (Generalized Fermi Liquid)
 - 6) MLO (Modified Lorentzian or Plujko model)

Comparison with exp. data : total radiation width $\langle \Gamma_{cy} \rangle$ of capturing state

\Box Results on D₀ and $\langle \Gamma_{c\gamma} \rangle$

• Table 1

			Level	$D_0[eV]$		Γ_{γ}^{tot} [meV]	
Isotope	El	M1	Density	LD Model	Experiment	Simulation	Experiment
156Gd	BA	SP	CTF	0.77	1.8(2)	67.4(9)	110(3)
	BA	SF	CTF			57.1(9)	
	BA	SF+SC	CTF			58.0(9)	
	KMF	SF+SC	CTF			28.7(3)	
	GLO	SF+SC	CTF			25.9(3)	
	EGLO	SF+SC	CTF			60.1(6)	
	GFL	SF+SC	CTF			50.5(8)	
			BSFG	1.6		von Egidy	RIPL-II
	BA	SP	BSFG			217(2)	299(3)
	BA	SF	BSFG			193(2)	275(4)
	BA	SF+SC	BSFG			196(2)	275(4)
	KMF	SF+SC	BSFG			89(1)	127(1)
	GLO	SF+SC	BSFG			76(4)	111(1)
	EGLO	SF+SC	BSFG			163(1)	237(2)
	GFL	SF+SC	BSFG			175(2)	244(3)
	GFL(m)	SF+SC	BSFG				244(3)
	MLO(12)	SF+SC	BSFG			150(2)	211(3)
	MLO(13)	SF+SC	BSFG				212(3)
	MLO(14)	SF+SC	BSFG				256(3)
	BA	SP	COMP	1.6		132	
	BA	SF+SC	COMP			116	
	GFL	SF+SC	COMP			101	
	EGLO	SF+SC	COMP			112	
	MLO(12)	SF+SC	COMP			89.4	
	KMF	SF+SC	COMP			56.2	
	GLO	SF+SC	COMP			49.7	

2. DiceBox Runs

□ E1 PSF Models and Exp. Data

The model PSF shapes are compared with an experimental PSF dataset of average resonance capture (ARC) measurement in the reference (Mughabghab and Dunford, Phys. Lett. **B487**, 155, 2000). B_n is the binding energy of neutron in ¹⁵⁶Gd, 8.536 MeV.

2. DiceBox Runs

□ E1 PSF Models and Exp. Photon abs. Data

• Fig. 3 : High energy photon absorption data

3. Model Results

Population-Depopulation Balance Plot (x-y)

- x : Depopulation intensity (EGAF & Budapest measurements)
- y : Population intensity (DiceBox simulations)

University

ngineering

4. Capture Cross Section

Thermal neutron capture cross section (σ_0 **)** : ¹⁵⁵Gd(n, γ)

$$\sigma_0 = \sum_{i=1}^n \sigma_{i\gamma f}^{\exp} (1 + \alpha_i) + \sum_j^{continuum} \sigma_{j\gamma f}^{\sin} (1 + \alpha_j) , \quad f \equiv \text{g.s.}$$

First sum : n = 6 (discrete levels), partial σ_{γ} 's from EGAF, Icc corrections essential \rightarrow 61,600(3,800) b

Second sum : Direct population of g.s. from continuum (DiceBox output) 4.7 - 6.5 % of total population of g.s.

Table 5. Reference values are listed for thermal neutron capture cross section of ¹⁵⁵ Gd.				
First author (reference) NSR code	σ_0 (uncertainty) [b]	Comments		
Lapp (PR71, 745) 1947La		$\sigma_0(^{157}{\rm Gd})/\sigma_0(^{155}{\rm Gd})=3.5$		
Inghram (PR79, 271) 1950In01	41,400			
Walker (PC) 1956Wa	25,000	Pile, mass spectroscopy		
Pattenden (58Geneva) 1958Pa	66,000 (2,000)	Transmission		
Tattersall (JNE12, 32) 1960Ta29	49,800 (600)	Pile oscillator, $\sigma(B) = 767$ b		
Groshev(IZV26, 1119) 1962Gr33	61,000 (5,000)			
Sun (JRNC256, 541, 2003)	59,100 (4,600)	Prompt k ₀ method		
Firestone (EGAF)	58,400 (5,000)			
Firestone (EGAF adopted)	65,000 (2,000)			
Mughabghab (Atlas) 2006MuZx	60,900 (500)	Evaluation		
Leinweber (NSE261,154,2006)	60,200	Resonance parameters and NJOY		
This work	65,200 (4,100)	EGAF+calculation		

 \rightarrow Both sum :

$$\sigma_0 = 65,200 (4,100) b$$

Seoul National University Dept. of Nuclear Engineering

5. Other Isotopes

5. Other Isotopes

¹⁵³Gd : ¹⁵²Gd(n,γ)

Quality of fit \rightarrow best

Two states' spin changed One state's parity changed Renormalization

Table 2. Simulated direct population of g.s. deexcited from continuum. The best fits to the populationdepopulation balance are used for estimating the portion of g.s. side feeding.

	E1 PSF Model	KMF+BSFG	GLO+BSFG	KMF+CTF	EGLO+CTF
Depopulatio	Population of g.s.				
	deexcited from	15.8(25)	13.5(21)	13.1(17)	15.5(24)
	continuum [%]				

Table 3. Reference values are listed for thermal neutron radiative capture cross section of ¹⁵³Gd.

First author (reference) NSR code	$\sigma_{\gamma 0} (uncertainty) [b]$	Comments	
Steinnes (JIN34, 2699) 1972St25	1,100 (100)	$\sigma_0(^{198}Au) = 98.8 b$	
Leinweber (ANS-Vancouver) 2006LeZV	1,050		
Matsue (JRNC262, 49) 2004Ma76	839 (26)		
De Corte (ADNDT85, 47) 2003De34	755 (7)		
Firestone (EGAF adopted)	745 (10)		
Mughabghab (Atlas) 2006MuZx	735 (20)	Evaluation	
This work	690 (30)	Combine EGAF and calculation	

Applied Nuclear Physics Group

10

10

10

104

10⁻³

□ 155 Gd : 154 Gd(n, γ) High spin states' deviation

Isomeric cross section : (121.05 KeV, 11/2⁻, T_{1/2} = 32 ms) 0.13(6) b

s.s. deexcited from continuum. The best fits to the populationng the portion of g.s. side feeding.

MLO+BSFG	GFL+CTF	BA+CTF
11.4(14)	12.3(14)	12.5(15)

r thermal neutron radiative capture cross section of ¹⁵⁴Gd.

First author (reference) NSR code	$\sigma_{\gamma 0} \left(uncertainty \right) [b]$	Comments
Walker (PC) 1956Wa	250 (120)	Pile, mass spectroscopy
Grishanin (AE19,459,1965) 1965Gr	100 (5)	
Grishanin (AE19,459,1965) 1965Gr	125 (32)	
Leinweber (ANS-Vancouver) 2006LeZV	86	
Firestone (EGAF adopted)	100 (15)	
Mughabghab (Atlas) 2006MuZx	85 (12)	Evaluation
This work	96 (7)	Combine EGAF and calculation

6. Summary

DiceBox result

Useful for obtaining the side-feeding intensity Useful for deciding capture cross section for thermal neutron Quasi-continuum emission spectrum & other pysical quantities can be predicted

Gd cross sections in review

- 155 Gd(n, γ) : Bigger than ENSDF value, 60900(500) b, by 7%
- ¹⁵⁷Gd(n,γ) : Smaller than ENSDF value, 254000(815) b, by 15%
- 152 Gd(n, γ) : Smaller than ENSDF value, 735(20) b, by 6%
- ${}^{154}Gd(n,\gamma)$: Consistent with ENSDF value, 85(12) b

□ High spin states & isomeric states

- More study required
- Better level density?

Possible improvements ?

• Automatic search for best fit

Thanks !!!