

Integral Quantities Calculated from ENDF Libraries

B. Pritychenko*

National Nuclear Data Center Brookhaven National Laboratory

*Email: pritychenko@bnl.gov

Brookhaven Science Associates

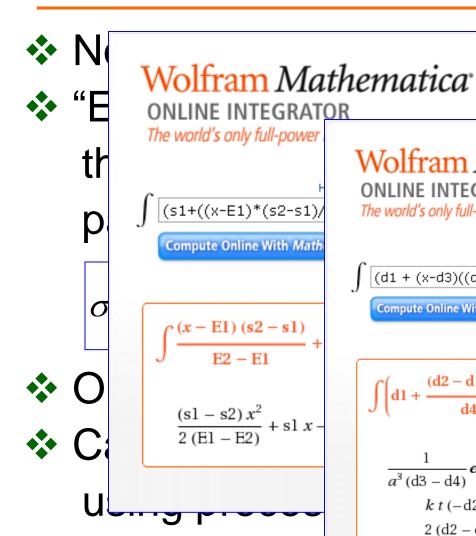
Evaluated Reaction Libraries

- ❖ ENDF/B-VII.0 (USA, 2006)
- ❖ JEFF-3.1 (Europe, 2005)
- ❖ JENDL-3.3 (Japan, 2002)
- * ROSFOND (Russia, 2008)
- * ENDF/B-VI.8 (USA, 2001)

How we can quickly validate nuclear data and select better evaluations using a few benchmarks?

ENDF Benchmarks

- Selected benchmarks (observables): σ^{thermal} , $\sigma^{\text{14 MeV}}$, Resonance Integrals, $\sigma^{\text{Maxw}(30 \text{ keV})}$, $\sigma^{\text{Maxw}(252Cf)}$
- * The reaction of interest: (n,tot), (n,el), (n,inel), (n,2n), (n,fission), (n, γ), (n,p), (n, α)
- One may compare observables for each library however good agreement makes sense only if we deal with independent evaluations
- ENDF independent evaluations: Atlas of Neutron Resonances, Standards Evaluation, KADONIS/Bao et al., ROSFOND (?)



CSEWG & USNDP Meetings.

BNL, November 3-6, 2009

Benchmark Calculations

Wolfram Mathematica

ONLINE INTEGRATOR

The world's only full-power integration solver

HOW TO ENTER INPUT I RANDOM EXAMPLE

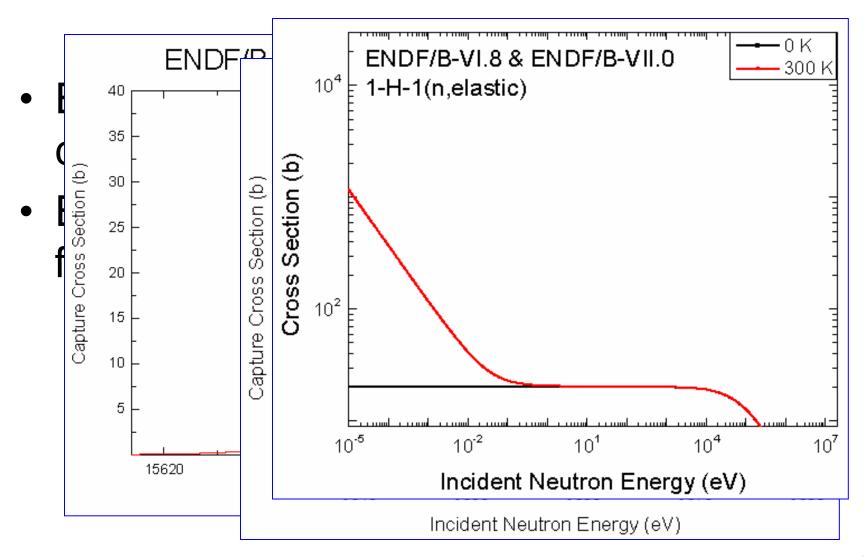
d on the fact

Compute Online With Mathematica

Traditional Form | Input Form | Output Form

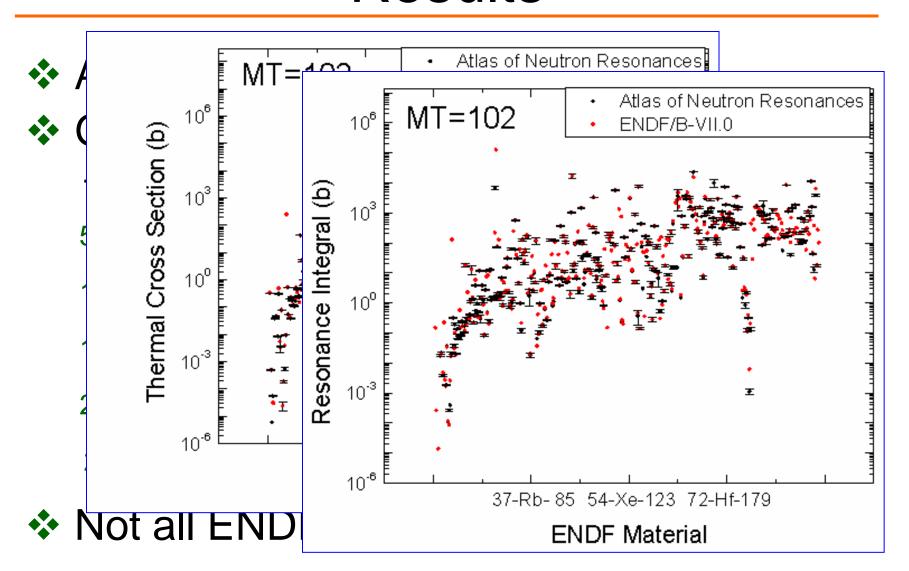
$$\int \left(d1 + \frac{(d2 - d1)(x - d3)}{d4 - d3} \right) x e^{-\frac{a \cdot x}{k \cdot t}} dx =$$

$$\frac{1}{a^{3} (d3 - d4)} e^{-\frac{ax}{kt}} k t (x (d1 (d4 - x) + d2 (x - d3)) a^{2} + k t (-d2 d3 + d1 d4 - 2 d1 x + 2 d2 x) a + 2 (d2 - d1) k^{2} t^{2})$$

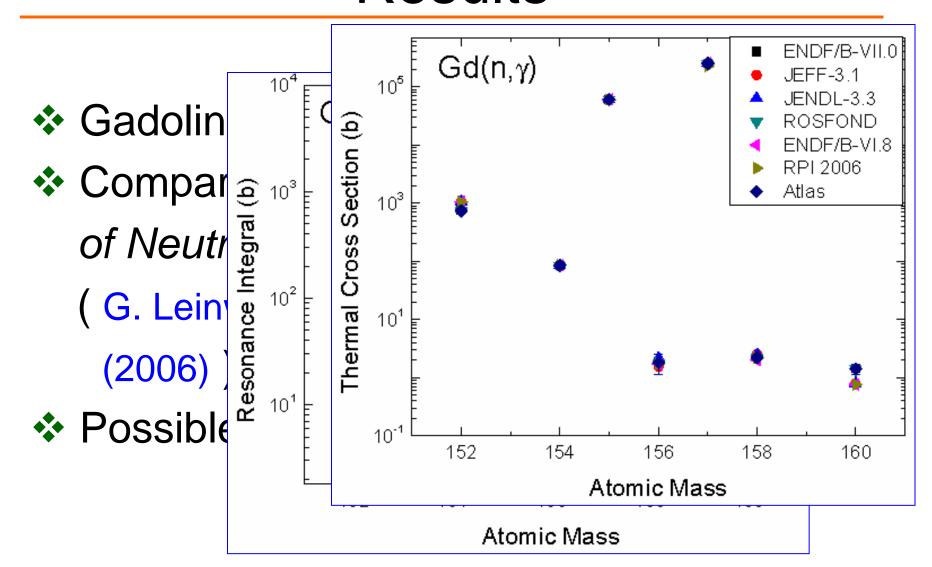

Time to compute: 0.11 second

Java

ithin a



Benchmark Validation



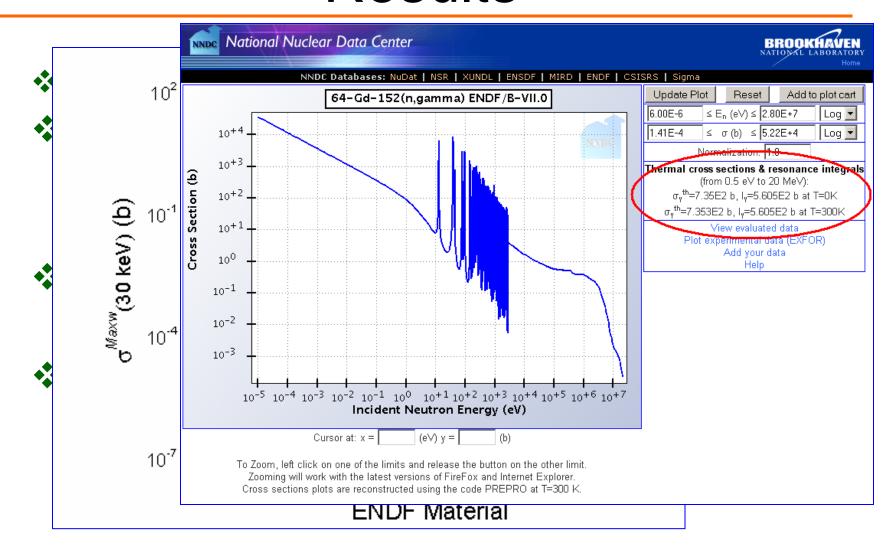


Table I. ENDF/B-VII.0 pre-calculated thermal neutron cross sections and resonance integrals (0.5 eV - 20 MeV) for elastic scattering, neutron capture and fission at T = 0° K; corresponding values from the *standards evaluation* and *Atlas of Neutron Resonances* are shown in round and square brackets, respectively.

Material	$\sigma_{\sf n,el}(\sf b)$	I _{n,el} (b)	$\sigma_{n,\gamma}(b)$	Ι _{n,γ} (b)	σ _{n,f} (b)	I _{n,f} (b)
233U	12.15116 (12.11(<i>66</i>)) [12.7(<i>3</i>)]	168.6988	45.23763 (45.56(<i>68</i>)) [45.5(<i>7</i>)]	141.0432 [138(<i>6</i>)]	531.2151 (531.22(<i>133</i>)) [529.1(<i>12</i>)]	775.4899 [775(<i>17</i>)]
235U	15.08416 (14.087(<i>220</i>)) [14.02(<i>22</i>)]	170.07	98.68643 (99.40(<i>72</i>)) [98.8(<i>8</i>)]	140.426 [146(<i>ô</i>)]	585.0856 (584.33(<i>102</i>)) [582.6(<i>11</i>)]	275.94 [275(<i>5</i>)]
238U	9.279782 [9.075(<i>15</i>)]	346.8409	2.682608 (2.677(<i>12</i>)) [2.680(<i>19</i>)]	275.5847 [277(<i>3</i>)]	1.679455E-5 [3E-6]	2.691588 [0.00163(<i>16</i>)]
²³⁹ Pu	7.975233 (7.8(<i>96</i>)) [7.94(<i>36</i>)]	178.3488	270.3295 (271.5(<i>214</i>)) [269.3(<i>29</i>)]	181.3443 [180(<i>20</i>)]	747.4013 (750(<i>183</i>)) [748.1(<i>20</i>)]	302.5637 [303(<i>10</i>)]
²⁴¹ Pu	11.23797 (12.13(<i>261</i>)) [9(<i>1</i>)]	175.1174	363.0489 (361.79(<i>496</i>)) [362.1(<i>51</i>)]	179.9437 [162(<i>8</i>)]	1011.852 (1013.96(<i>658</i>)) [1011.1(<i>62</i>)]	569.6337 [570(<i>15</i>)]

Conclusion

- Integral quantities have been calculated for five major ENDF Libraries and eight MT numbers
- Comparison between calculated quantities and independent benchmarks allow to identify potential problems
- These results are analyzed and loaded into Sigma databases
- Future plans will include extension of the current project for Westcott factor calculations
- Many thanks to M. Herman, S. Mughabghab, V. Zerkin

