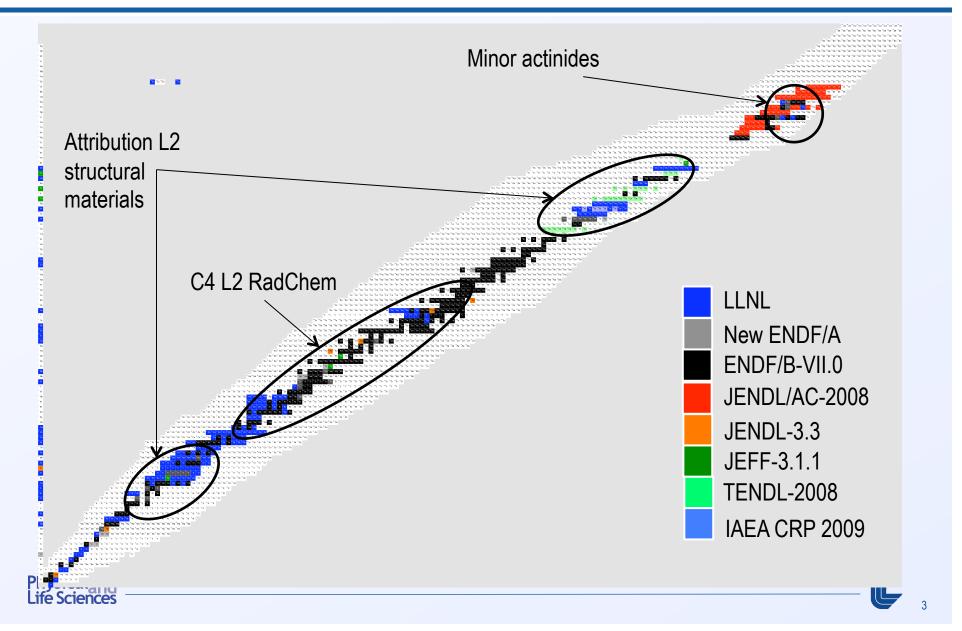
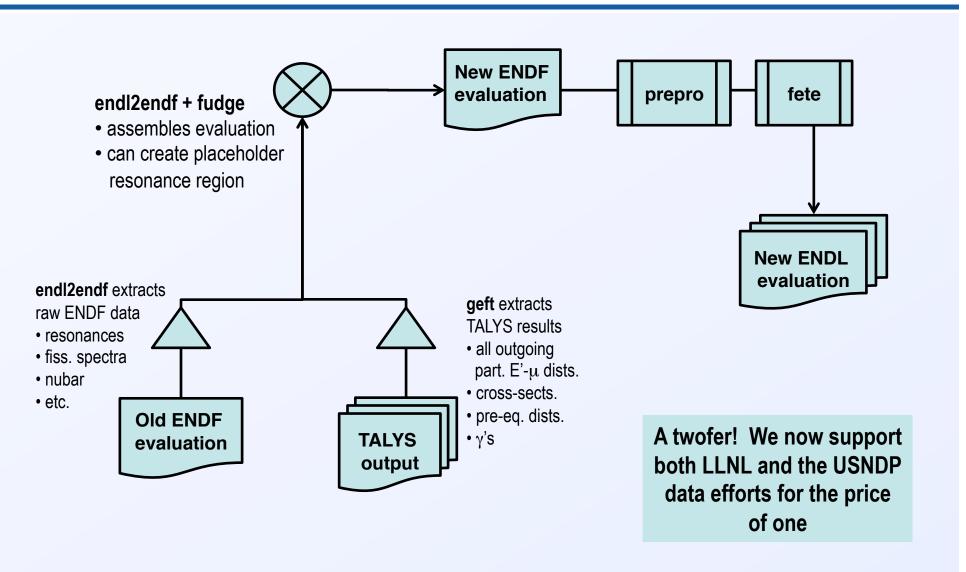
LLNL Evaluation Work in FY09

David Brown CSEWG Meeting, 11/3/2009


Lawrence Livermore National Laboratory

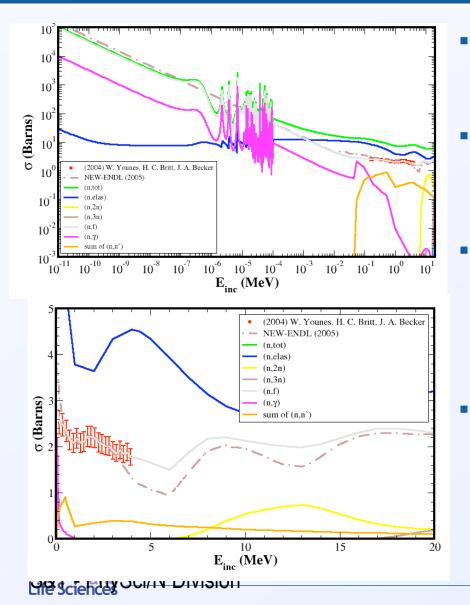
We want to have ENDF/B & ENDL libraries synchronized to greatest extent possible


- LLNL maintains its own internal nuclear data library: ENDL
 - Traditionally not updated frequently: 110 isotopes in neutron sublibrary, last minor revision in 1994
 - ENDL2008 changed this: 526 isotopes in neutron sublibrary, 61% from ENDF/B-VII.0
 - ENDL2009 continues this as will ENDL2010
- LLNL's evaluation capabilities languished between 1995 2005
- ENDL & ENDF are (hopefully) asymptotically approaching one another
 - Release cycles very different (ENDL ~ yearly, ENDF ~ every 3-5 years)
 - LLNL customers needs differ from broader nuclear data community
 - Formats & processing very different
 - LLNL moving from legacy internal formats & codes to XML, OOP formats & infrastructure (see B. Beck's talk)
 - ENDF still uses legacy formats and processing must support it
 - ARRA-funded project to update ENDF

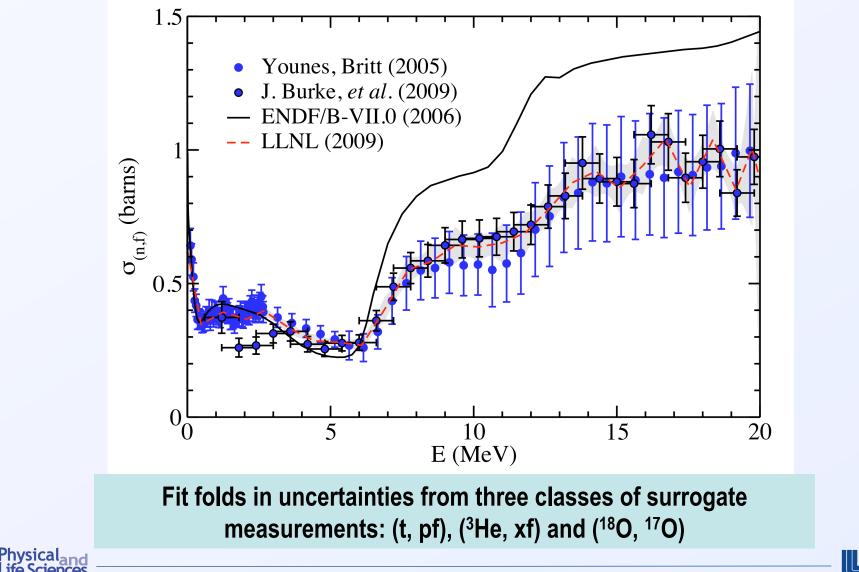
In ENDL2009, we aim to choose the best available evaluations, whatever the source is

Our new evaluation procedures produce *complete* ENDL and ENDF evaluations

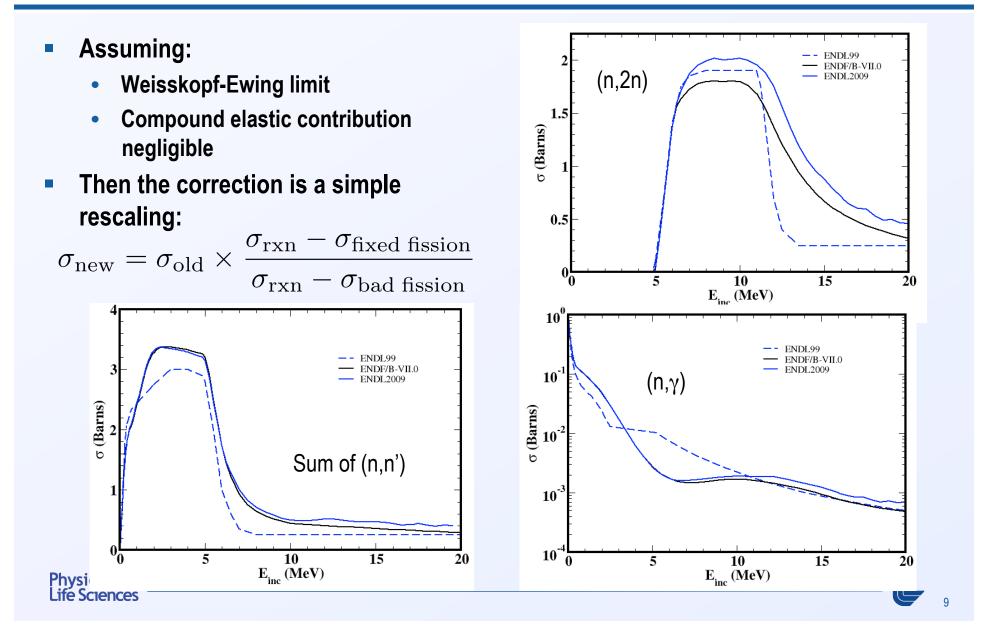
Outline for the talk


- Background
- Actinides
 - JENDL/AC-2008 review
 - 240Am
 - 239U
- Structural materials
- Other Misc. evaluations

Results from review the JENDL Actinoid 2008 (JENDL/AC-2008) Library


	²³⁷ Cf ²³⁸ Cf ²³⁹ C	cf ²⁴⁰ Cf ²⁴¹ Cf	²⁴² Cf ²⁴³ Cf	²⁴⁴ Cf ²⁴⁵ Cf	²⁴⁶ Cf ²⁴⁷ Cf	²⁴⁸ Cf	²⁴⁹ Cf	²⁵⁰ Cf ²⁵¹	Cf ²⁵² Cf	²⁵³ Cf	²⁵⁴ Cf
	²³⁶ Bk ²³⁷ Bk ²³⁸ E										
	n ²³⁵ Cm ²³⁶ Cm ²³⁷ C										²⁵² Cn
²³¹ Am ²³² Am ²³³ Am	n ²³⁴ Am ²³⁵ Am ²³⁶ A	.m ²³⁷ Am ²³⁸ An	n ²³⁹ Am ²⁴⁰ An	n ²⁴¹ Am ²⁴² Am	²⁴³ Am ²⁴⁴ An	n ^{²₄₅} Am	²⁴⁶ Am	²⁴⁷ Am ²⁴⁸	Am ²⁴⁹ Am	ı	
²²⁹ Pu ²³⁰ Pu ²³¹ Pu ²³² Pu								²⁴⁶ Pu ²⁴⁷	Pu		
²²⁸ Np ²²⁹ Np ²³⁰ Np ²³¹ Np						²⁴³ Np	²⁴⁴ Np				
²²⁷ U ²²⁸ U ²²⁹ U ²³⁰ U					²⁴⁰ U ²⁴¹ U	²⁴² U		LLN	L		
²²⁶ Pa ²²⁷ Pa ²²⁸ Pa ²²⁹ Pa						1		Nev	V END	F/A	
²²⁵ Th ²²⁶ Th ²²⁷ Th ²²⁸ Th					²³⁸ Th			ENDF/B-VII.0			
²²⁴ Ac ²²⁵ Ac ²²⁶ Ac ²²⁷ Ac									IDL/AC		8
²³ Ra ²⁴ Ra ²⁵ Ra ²⁶ Ra ²⁷ Ra ²⁸ Ra ²⁸ Ra ²⁸ Ra ¹⁰ Ra Investigated JENDL/AC-2008 & all other major libraries;											
echnical report LLN XXX, will upload commendations to		made recommendations based on: Visual inspection of cross section plots χ^2 compared to cross section data Scope and quality of systematics when no data									

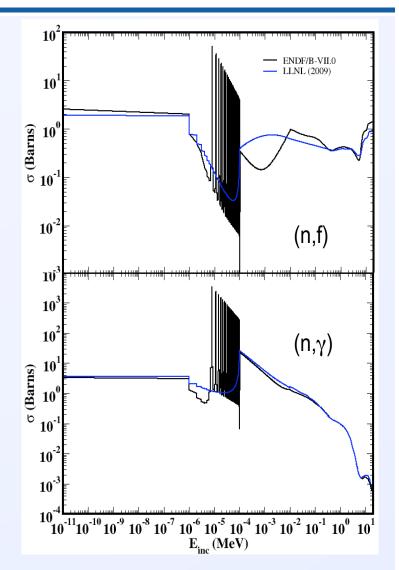
²⁴⁰Am evaluation: requires further modification before ready for ENDF/B-VII.1



- Used TALYS + geft + endl2endf
 - Soukhovitskii, Chiba et al. OMP
 - RIPL levels, masses, etc.
- Resonance data, v and fission spectrum from ²⁴²Am evaluation in ENDF/B-VII.0
 - Resonances from JENDL/AC-2008 better, we should adopt those
- Everything else from TALYS:
 - σ's
 - spectra
 - γ'S
 - angular distributions
- We tuned cross sections:
 - Swap in Younes, Britt (n,f) evaluation based on surrogate (t,pf)
 - Attempted to match σ's onto resonances: should redo w/ JENDL/ AC-2008 resonances

Burke *et al.* performed surrogate measurement of ²³⁹U(n,f), so we re-evaluated ²³⁹U, folding in Younes & Britt (n,f) evaluation

We have changed the fission cross-section, so we must correct the ENDF/B-VII.0 cross-sections too

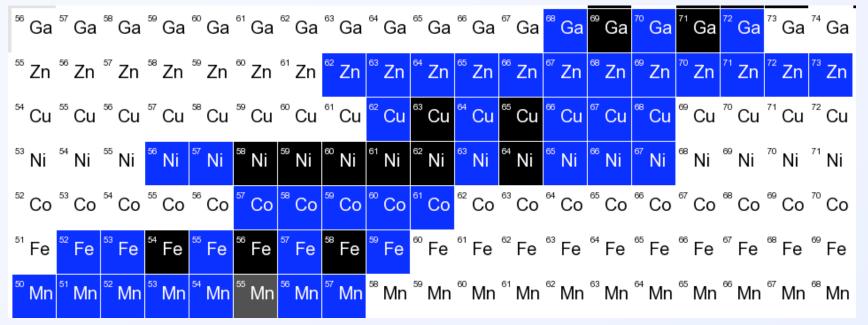


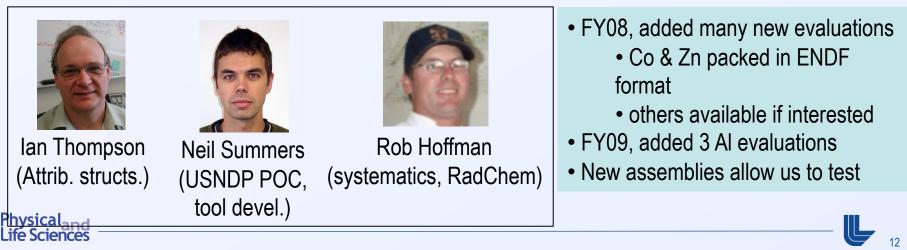
The original ²³⁹U resonances required several fixes since they were a copy of the ²³⁷U resonances

- RRR was "picket fence"
- URR average parameters matched to "picket fence"
- J^Π set to ²³⁷U values g.s. of ²³⁷U is ¹/₂⁺
- Changing to ²³⁹U J^{II} made things worse (g.s. of ²³⁹U is 5/2⁺)
- Matching onto high energy (n,f) looks scary

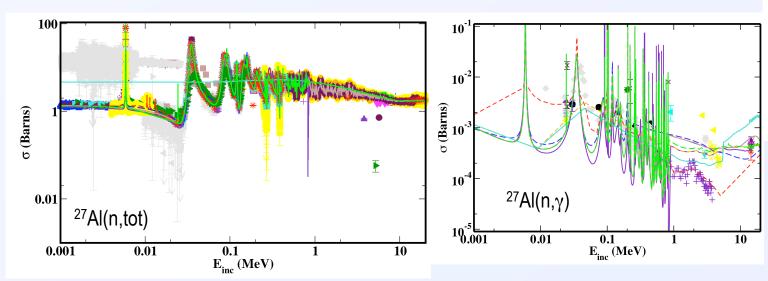
Use URR for all resonances, match averages to high energy cross-sections and thermal σ values from Mughabghab

Channel	Therm. σ (barns)	Therm. σ (barns) Mughabghab	Res. Int. (barns)
(n,el)	21.32		199.9
(n,γ)	22.16	22 ± 5	50.5
(n,f)	13.97	14 ± 3	19.0


Physical_{and} Life Sciences


Outline for the talk

- Background
- Actinides
- Structural materials
 - Zn
 - Al
 - 57Fe
 - 59Co
 - Ni
 - Ta
 - Re
 - Pb
 - W
- Other Misc. evaluations


Light structural materials (FY08 Attribution L2 Milestone)

AI (Z=13) ²⁵ AI ²⁷ AI ²⁷ AI ²⁸ AI ²⁹ AI

- Stable ²⁷Al, want ²⁵⁻²⁹Al
- ²⁷AI: Resonance parameters defined up to 1 MeV, but still slightly fluctuations up 10 MeV.
- Resonances (to 1 MeV) from ENDF/B.VII
- Large (n,γ) data disagreements above 1 MeV!
- Large (n,tot) data disagreements below 20 keV!
- Final result is green line; use green-line Talys default also for unstables (without resonances).
- Crits. & pulsed sphere tests in Descalle's talk

We are submitting this to ENDF/A for (we hope) inclusion in ENDF/B-VII.1

²⁷Al(n,2n)

12

14 16 E_{inc} (MeV) 18

0.15

0.1

0.05

 $\sigma \left(\text{Barns} \right)$

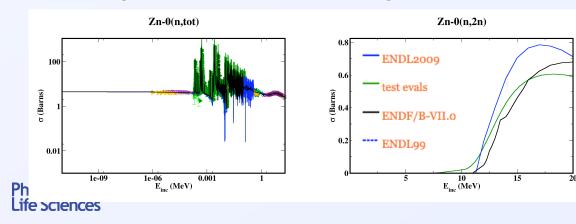
Evaluations

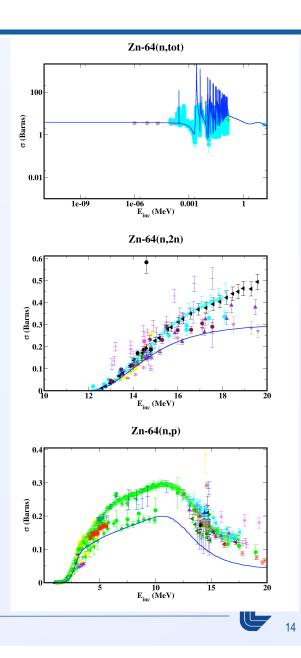
-endf.b-vii

-JEFF-3.1.1

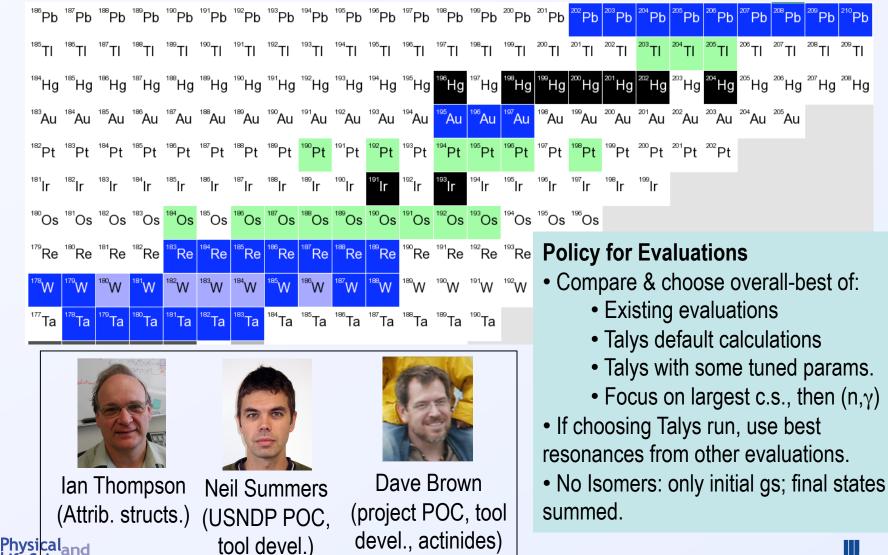
--- JENDL-3.3

-ENDL2008

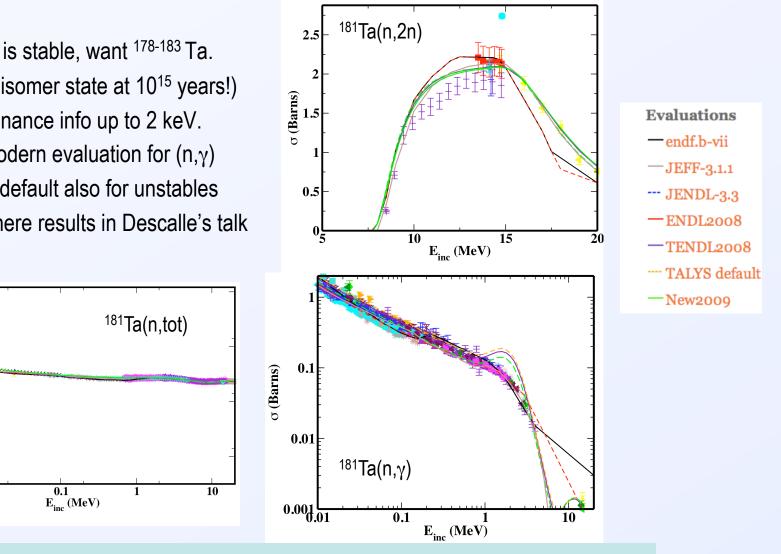

-TENDL2008


---- TALYS default

-New2009


Zn (Z=30)

- We developed isotopic evaluations for A=62-73
- Used TALYS calculation:
 - systematics developed by Hoffman for level densities, gamma ray str funcs
 - Koning-Deleroche OMP
- natZn ENDF resonances disassembled to fill out stables
- Cross sections not fitted, data needs detailed sorting out (e.g. (n,2n) to right)
- Reassembled natural eval. Compares well to ^{nat}Zn eval.
- Performs well in crits (see Descalle talk)
- Will generate tech report detailing evaluation(s)


Heavy structural materials (FY09 Attribution L2 Milestone)

1

- Only ¹⁸¹Ta is stable, want ¹⁷⁸⁻¹⁸³Ta.
- (¹⁸⁰Ta has isomer state at 10¹⁵ years!)
- ¹⁸¹Ta: resonance info up to 2 keV.
- No best modern evaluation for (n,γ)
- Use Talys default also for unstables
- Pulsed sphere results in Descalle's talk

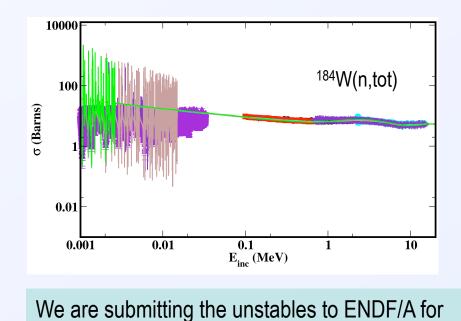
Physicaland Life Sciences

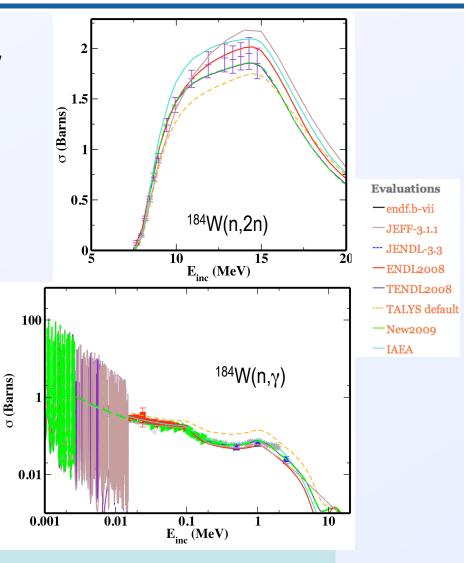
0.01

10000

100

0.01

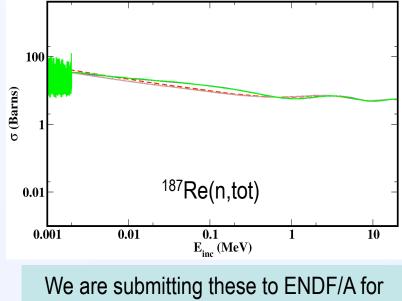

0.001


σ (Barns)

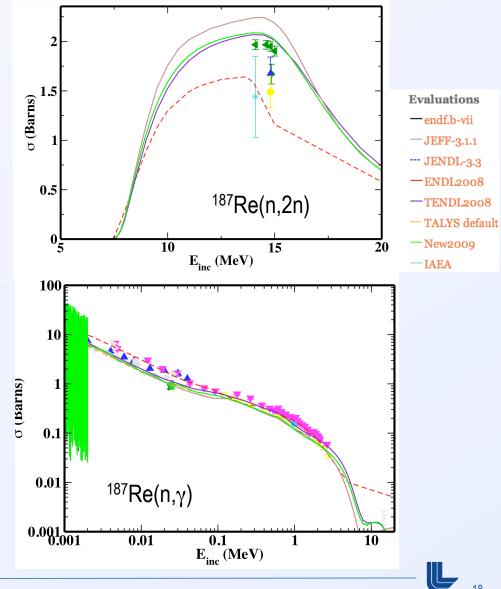
We are submitting these to ENDF/A for (we hope) inclusion in ENDF/B-VII.1

W (Z=74)

- Stable ^{180,182-4,186} W, want also ^{178-9,181,185,187-8}W.
- The recent IAEA evaluation of stable W is clearly the best for all of these, including resonances.
- The default-talys curves are plausible for stable W; show plots for ¹⁸⁴W.
- So, use default talys for the unstable isotopes.
- Show pulsed sphere results in Descalle's talk



Ph (we hope) inclusion in ENDF/B-VII.1, we recommend the IAEA W evals for the stables

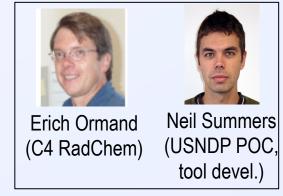

Re (Z=75)

- Very little (n,tot) data for any isotope.
- For ^{185,7}Re, after reducing TALYS default Γ_{γ} TALYS is ok.
- So use for unstable isotopes too.

We are submitting these to ENDF/A for (we hope) inclusion in ENDF/B-VII.1

Other evaluations we've performed, but aren't ready to submit to ENDF/B-VII.1

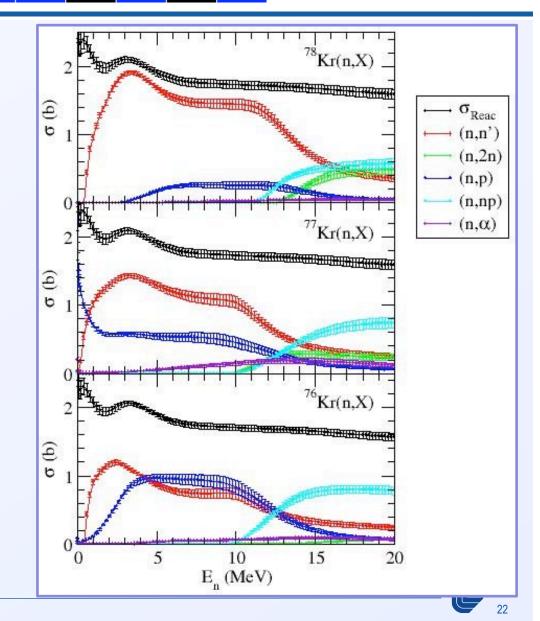
- 204,206,207,208Pb
 - Ours is tuned TALYS calc with ENDF/B-VII.0 resonances (they extend very high due to closed shell)
 - Poor performance in pulsed spheres
 - *k*_{eff} systematically high in critical assemblies
- 57Fe: not different enough
 - Ours is merger of NRG evaluation & ENDF/B-VII.0 resonances
 - NRG (using TALYS) evaluation nearly identical to ENDF/B-VII.0 (using GNASH)
 - Performance in crits & pulsed spheres nearly identical
- 59Co: needs fix
 - Ours is tuned TALYS calc w/ ENDF/B-VII.0 resonances
 - Recently discovered bug: resonance smooth background wrong
 - Abysmal performance in activation ratio tests
 - k_{eff} systematically high in critical assemblies


Outline for the talk

- Background
- Actinides
- Structural materials
- Other Misc. evaluations
 - Background
 - Au
 - Xe
 - As
 - Ar

Nuclear data required for diagnostics (Campaign 4 L2 Milestone)

- Nuclei of lightest known isotope offer a unique (n,2n) diagnostic
 - Network of nuclei with multiple (n,2n) reactions as well as (n,γ)
 - In principle, fewer problems with background as the reaction products are radioactive and not present in nature
- This presents a challenge as data is limited and only available, if at all, for the first nuclei and none for the secondary products
 - We must rely on theoretical methods TALYS reaction code
 - Benchmark where possible
 - Estimate uncertainties due to model inputs
 - Optical potential reaction cross section
 - Level densities channel cross sections
 - Pre-equilibrium models (especially knockout)
 - In some nuclei other charge-particle channels are open and must be understood – competition with neutrons

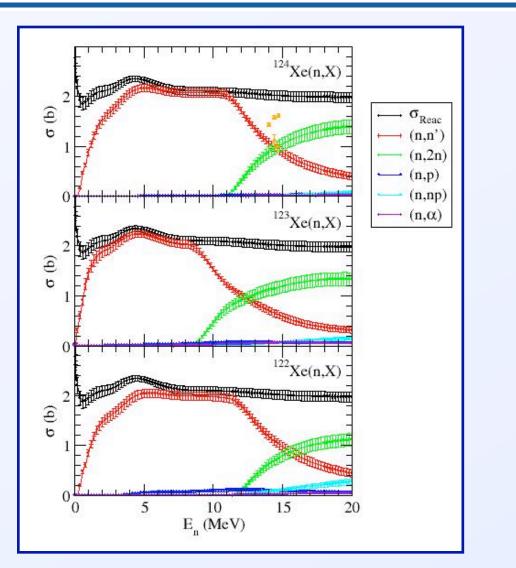

Physical_{anc} Life Sciences

Kr isotopes

⁷⁶ Kr ⁷⁷ Kr ⁷⁸ Kr ⁷⁹ Kr ⁸⁰ Kr ⁸¹ Kr ⁸² Kr ⁸³ Kr ⁸⁴ Kr ⁸⁵ Kr ⁸⁶ Kr

- Small charge-particle channels, neutron channels are reliable
- Resonances taken from ENDF/B-VII.0
- (n,γ) is essentially unchanged from WPEC-23

We are submitting this to ENDF/A for (we hope) inclusion in ENDF/B-VII.1

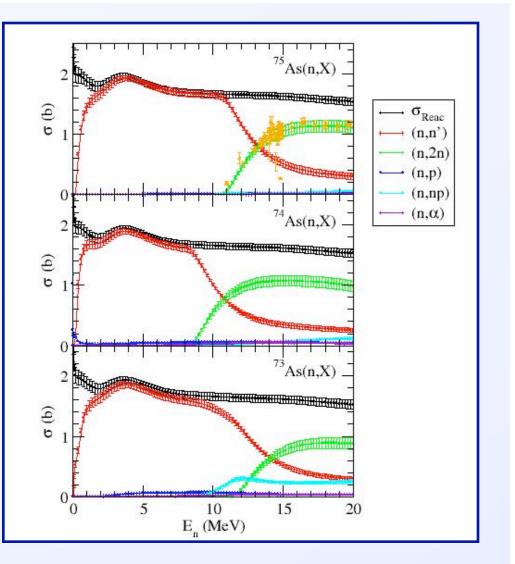


Xe isotopes

 Small charge-particle channels, neutron channels are reliable

¹²²Xe ¹²³Xe ¹²⁴Xe ¹²⁵Xe ¹²⁶Xe ¹²⁷Xe ¹²⁸

We are submitting this to ENDF/A for (we hope) inclusion in ENDF/B-VII.1



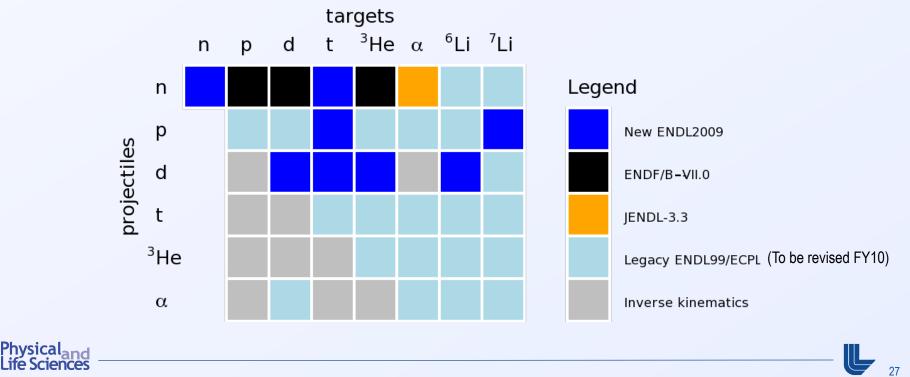
As isotopes

- Abundant (n,2n) data
- Overall agreement with default parameters
- Merged with ENDF/B-VII.0 resonances

We are submitting this to ENDF/A for (we hope) inclusion in ENDF/B-VII.1

Other evaluations we've performed, but aren't ready to submit to ENDF/B-VII.1

- **34,35,36Ar**
 - Ours is tuned TALYS calc with ENDF/B-VII.0 resonances
 - Problem discovered with pre-equilibrium model that messed up (n,γ)
 - We will revise and submit for ENDF/B-VII.2 pending fixes in TALYS
- **195,196,197Au**
 - Ours is tuned TALYS calc
 - Use ENDF/B-VII.0 resonances, match onto (n,γ)
 - Performs poorly in LLNL pulsed sphere test (see Descalle's talk)
 - We will revise and submit for ENDF/B-VII.2 due to poor performance in pulsed spheres


Summary

- Actinides
 - Submitting recommended JENDL/AC-2008 evaluations (59 minor actinides) for ENDF/B-VII.1
 - Remerge 240Am resonances for ENDF/B-VII.1
 - 237U needs review
 - 239U submitted for ENDF/B-VII.1
- Structural materials
 - Not ready: Pb?, Zn, Co
 - Not worth submitting: 57Fe
 - Submitted for ENDF/B-VII.1: Ta, W, Re
- Other Misc. evaluations
 - Not ready: Ar, Au
 - Submitted for ENDF/B-VII.1: As, Kr, Xe

What's next?

- FY10 L2 milestone to deliver new (n,f) fission neutron spectrum, with covariance (LLNL, LANL)
- MT=458 files re-generated for all actinides in final list (Vogt, Brown)
- Previously listed evaluations
- Thermonuclear reactions (Navratil, Quaglioni, Hale, Brown):

