Data Testing at LANL

A. C. (Skip) Kahler (T-2) & R. Mosteller (X-2) Los Alamos National Laboratory

CSEWG Meeting

November 2009

UNCLASSIFIED

Slide 1

Data Testing Overview

- CENDL-3 / JENDL-4 Copper Russ.
- Revised ¹¹³Cd Russ.
- Revised ⁹Be Skip (Gerry Hale support).
- ²³⁹Pu Thermal Solution Criticals Skip.
- LANL Actinide Evaluations and Reaction Rates Skip (with encouragement from Mark Chadwick and files produced by Phil Young, Toshihiko Kawano and Patrick Talou).

UNCLASSIFIED

CENDL-3 / JENDL-4 Isotopic Copper

Unmoderated Zeus Benchmark ("Zeus-5")

The unmoderated Zeus benchmark contains cylindrical platters of HEU enclosed in copper

Previous Zeus benchmarks contained cylindrical platters of graphite interspersed with the fuel platters

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

CENDL-3 / JENDL-4 Isotopic Copper

MCNP5 RESULTS FOR THE UNMODERATED ZEUS BENCHMARK

Copper		Calculated k _{eff}							
section	Benchmark k _{eff}	ENDF/B-VII.0	ENDF/B-VI	JEFF-3.1	JENDFL-3.3				
As stated		1.0115 ± 0.0003	1.0077 ± 0.0003	1.0084 ± 0.0003	1.0241 ± 0.0003				
ENDF/B-V	1.0004± 0.0016	0.9998 ± 0.0003	0.9971 ± 0.0003	0.9974 ± 0.0003	1.0000 ± 0.0003				
CENDL-3.1		1.0049 ± 0.0003							

 $\sigma \leq |\Delta \mathbf{k}| \leq 2\sigma$

 $2\sigma \leq |\Delta k| \leq 3\sigma$

|∆k| > 4σ

ENDF/B-V copper cross sections significantly improve the results

CENDL-3.1 copper cross sections also improve the results, but not as much as ENDF/B-V

UNCLASSIFIED

Slide 4

CENDL-3 / JENDL-4 Isotopic Copper

MCNP5 RESULTS FOR ZEUS BENCHMARKS

	E-VII.0		Calculated k _{eff}							
	Intermed		Nuclear Data for Cu from							
Case	(%)	Benchmark k _{eff}	ENDF/B-VII.0	ENDF/B-V*	JENDL-4*	CENDL-3.1*				
Zeus-1	72.51	0.9977 ± 0.0008	0.9932 ± 0.0003	0.9925 ± 0.0003	0.9920 ± 0.0003	0.9913 ± 0.0003				
Zeus-2	69.29	1.0001 ± 0.0008	0.9970 ± 0.0003	0.9974 ± 0.0003	0.9961 ± 0.0003	0.9949 ± 0.0003				
Zeus-3	62.94	1.0015 ± 0.0009	1.0007 ± 0.0003	1.0016 ± 0.0003	1.0003 ± 0.0003	0.9984 ± 0.0003				
Zeus-4	49.40	1.0016 ± 0.0008	1.0076 ± 0.0003	1.0079 ± 0.0003	1.0075 ± 0.0003	1.0040 ± 0.0003				
Zeus-5	16.23	1.0004 ± 0.0016	1.0115 ± 0.0003	0.9998 ± 0.0003	1.0110 ± 0.0003	1.0049 ± 0.0003				

* All other nuclear data from ENDF/B-VII.0

 $\sigma \leq |\Delta \mathbf{k}| \leq 2\sigma$

 $2\sigma \leq |\Delta \mathbf{k}| \leq 3\sigma$

3σ < |∆k| ≤ 4σ

 $|\Delta k| > 4\sigma$

UNCLASSIFIED

Slide 5

CENDL-3 / JENDL-4 Isotopic Copper

OBSERVATIONS ON CU CROSS SECTIONS

ENDF/B-V and JENDL-4 copper cross sections have little impact on k_{eff} for Zeus-1 through Zeus-4

CENDL-3.1 copper cross sections have significant impact on k_{eff} for all five Zeus benchmarks

Judgments about adequacy of copper cross sections are complicated by the fact that the uranium cross sections produce an unquantified energy-dependent bias in k_{eff} for the Zeus benchmarks

UNCLASSIFIED

Slide 6

Revised ¹¹³Cd RR Data

20 benchmarks with highly enriched uranyl nitrate solutions, 18 of them containing Cd

Two different cylindrical stainless-steel vessels containing a highly enriched uranium (HEU) nitrate solution were surrounded by an effectively infinite reflector of water around and beneath it

The nitrate solution contained Cd for 16 of the 20 cases, and the water reflector contained Cd for 9 of them

The height of the reflector was substantially greater than that of the solution in the vessel in all cases

Criticality was obtained by adjusting the height of the solution

UNCLASSIFIED

Revised ¹¹³Cd RR Data

ENDF/B-VI and ENDF/B-VII.0 produce poor results for these benchmarks, even though ENDF/B-V produces reasonable results

Almost all thermal absorption in Cd occurs in a single isotope, ¹¹³Cd

Most of the thermal absorption in ¹¹³Cd occurs in a single resonance at 0.178 eV

A revised thermal capture cross section for ¹¹³ Cd was generated by Said Mughabghab at BNL, based on earlier measurements of that resonance

Recently, new measurements of that resonance have been performed at Geel, and a new capture cross section for ¹¹³Cd has been generated based on those data

S. Kopecky <u>et al</u>, "The Total Cross Section and Resonance Parameters for the 0.178 eV Resonance of ¹¹³Cd, Nuclear Instruments and Methods in Physics Research B," **267**(2009)2345.

UNCLASSIFIED

Revised ¹¹³Cd RR Data

MCNP RESULTS FOR THE BENCHMARKS WITH THE SMALLER VESSEL (24.18 cm DIAMETER)

	In-Vessel				
Case	Cd Conc. (mg/g)	Benchmark k _{eff}	ENDF/B-VII.0	ENDF/B-VII.0 + BNL ¹¹³ Cd	ENDF/B-VII.0 + Geel ¹¹³ Cd
1	0	1.0012 ± 0.0026	0.9997 ± 0.0004		
2*	0	1.0012 ± 0.0029	0.9897 ± 0.0004	0.9911 ± 0.0004	0.9894 ± 0.0004
3	1.208	1.0012 ± 0.0026	0.9957 ± 0.0004	0.9982 ± 0.0004	0.9978 ± 0.0004
4	2.393	1.0012 ± 0.0025	0.9955 ± 0.0004	0.9998 ± 0.0004	0.9979 ± 0.0004
5	3.897	1.0012 ± 0.0025	0.9974 ± 0.0004	1.0042 ± 0.0004	1.0019 ± 0.0004
6	4.069	1.0012 ± 0.0025	0.9998 ± 0.0004	1.0059 ± 0.0004	1.0034 ± 0.0004
7	4.196	1.0012 ± 0.0024	0.9995 ± 0.0004	1.0070 ± 0.0004	1.0037 ± 0.0004
8	4.271	1.0012 ± 0.0024	0.9983 ± 0.0004	1.0049 ± 0.0004	1.0025 ± 0.0004

* Reflector contains Cd

 $\sigma < |\Delta k| \le 2\sigma$ $|\Delta k| > 2\sigma$

UNCLASSIFIED

Slide 9

Revised ¹¹³Cd RR Data

MCNP RESULTS FOR THE BENCHMARKS WITH THE LARGER VESSEL (29.16 cm DIAMETER)

	In-Vessel			Calculated k _{eff}	
Case	Cd Conc. (mg/g)	Benchmark k _{eff}	ENDF/B-VII.0	ENDF/B-VII.0 + BNL ¹¹³ Cd	ENDF/B-VII.0 + Geel ¹¹³ Cd
9	0	1.0012 ± 0.0020	0.9980 ± 0.0004		
10*	0	1.0012 ± 0.0024	0.9892 ± 0.0004	0.9900 ± 0.0004	0.9884 ± 0.0004
11*	1.240	1.0012 ± 0.0022	0.9895 ± 0.0004	0.9923 ± 0.0004	0.9910 ± 0.0004
12*	2.250	1.0012 ± 0.0021	0.9920 ± 0.0004	0.9970 ± 0.0004	0.9949 ± 0.0004
13*	3.362	1.0012 ± 0.0021	0.9915 ± 0.0004	0.9981 ± 0.0004	0.9955 ± 0.0004
14*	4.189	1.0012 ± 0.0020	0.9919 ± 0.0004	0.9994 ± 0.0004	0.9964 ± 0.0004
15*	4.577	1.0012 ± 0.0021	0.9943 ± 0.0004	1.0014 ± 0.0004	0.9978 ± 0.0004
16*	4.897	1.0012 ± 0.0020	0.9920 ± 0.0004	1.0004 ± 0.0004	0.9965 ± 0.0004
17*	5.047	1.0012 ± 0.0021	0.9909 ± 0.0004	0.9993 ± 0.0004	0.9961 ± 0.0004
18	5.032	1.0012 ± 0.0020	0.9933 ± 0.0004	1.0014 ± 0.0004	0.9981 ± 0.0004
19	5.937	1.0012 ± 0.0020	0.9936 ± 0.0004	1.0024 ± 0.0004	0.9980 ± 0.0004
20	6.626	1.0012 ± 0.0019	0.9913 ± 0.0004	1.0005 ± 0.0004	0.9970 ± 0.0004

* Reflector contains Cd

 $\sigma < |\Delta k| \le 2\sigma$ $|\Delta k| > 2\sigma$

UNCLASSIFIED

Slide 10

Revised ¹¹³Cd RR Data

OBSERVATIONS ON 113CD CAPTURE CROSS SECTION

Cases 2 , 10 ,and 11 produce anomalously low values for $k_{\rm eff}$ even though they contain relatively low concentrations of Cd; consequently, they probably should be omitted from the set of cases upon which decisions are based

Both the BNL and the Geel cross sections produce better agreement with benchmark values for k_{eff} than ENDF/B-VII.0 does

For the 15 "reliable" cases with Cd present, the BNL cross section produces $|\Delta k| > 2\sigma$ for just 1 case, while the GEEL cross section does so for 6 cases

On the other hand, if the calculated k_{eff} 's for the no-Cd cases (1 for the smaller vessel and 9 for the larger one) are taken as the baselines, then the Geel cross section produces better agreement than the BNL cross

UNCLASSIFIED

Revised ⁹Be, Including RPI Data

- Inclusion of recent RPI total cross section data moves the data set back toward ENDF/B-VI, per Gerry Hale, and confirmed by limited eigenvalue testing.
- HEU-MET-FAST-041, cases 1 & 2
 - Spherical HEU with Be reflector (~4.7 cm thick Be in case 1; ~11.8 cm thick Be in case 2).
 - Case 1 ENDF/B-VI.8, ENDF/B-VII.0 and new calculated eigenvalues are 1.00561(9), 1.00279(9) and 1.00691(9)
 - Case 2 ENDF/B-VI.8, ENDF/B-VII.0 and new calculated eigenvalues are 1.00513(11), 1.00024(11) and 1.00532(10)
- Still more evaluation work to be done (e.g. angular distributions).

UNCLASSIFIED

Slide 12

²³⁹Pu Thermal Solution Criticals

- Critical eigenvalues calculations were performed for a suite of >100 Pu-SOL-THERM critical experiments during ENDF/B-VII beta testing.
- The average eigenvalue was ~1.0045; a result consistent with the greater than unity bias seen in historical plutonium solution eigenvalue calculations.
 - When correlated against common parameters such as Above-Thermal Leakage Fraction (ATLF), Above-Thermal Fission Fraction (ATFF), atom percent ²³⁹Pu or grams Pu per liter no trend in calculated eigenvalue is observed.
- Recent results from the JEFF community suggest that the revised evaluation currently in JEFF-3.1.1 has significantly reduced this bias.
- ORNL submitted a revised evaluation to ENDF/A more than one year ago.
 - Preliminary testing at ANL suggests that the calculated eigenvalue bias is little changed when this evaluation is used.

UNCLASSIFIED

²³⁹Pu Thermal Solution Criticals

- A set of seven Pu-SOL-THERM benchmarks have been extracted from the larger set.
 - PST1.4 & PST12.13 span the ATLF space;
 - PST12.10 & PST34.15 span the ATFF space;
 - PST4.1 & PST18.6 span the ²³⁹Pu atom percent space;
 - PST12.10 & PST34.3 span the g Pu per liter space.
- All benchmark experiments are performed in simple geometry
 - PST1.4 & PST4.1 are a water-reflected spheres;
 - PST18.6, PST34.3 & PST34.15 are water-reflected cylinders;
 - PST12.10 & PST12.13 are a water-reflected slabs;

UNCLASSIFIED

Slide 14

²³⁹Pu Thermal Solution Criticals

Parameter	Benchmark	ENDF/B-VII.0	"old" ORNL ENDF/A	JEFF-3.1.1
	PST1.4	1.00484(13)	1.00652(13)	1.00137(13)
ATL	PST12.13	1.00977(6)	1.00954(6)	1.005xx(x)
	PST12.10	1.00440(10)	1.00431(10)	1.00011(10)
ΑΙΓΓ	PST34.15	0.99785(11)	1.00231(11)	0.99606(10)
²³⁹ Pu atom	PST4.1	1.00389(11)	1.00409(11)	0.99899(11)
percent	PST18.6	1.00502(11)	1.00549(12)	1.00194(11)
a Du non liton	PST12.10	1.00440(10)	1.00431(10)	1.00011(10)
g ru per mer	PST34.4	1.00240(11)	1.00313(11)	0.99991(11)

 MCNP results for this subset of benchmarks – new JEFF-3.1.1 gives most accurate results.

UNCLASSIFIED

Actinide Reaction Rate Data Testing

- A summary of results presented last summer.
- LANL Actinide evaluations include ^{236,237}U, ²⁴⁰Pu and ²⁴¹Am
- Reaction rate measurements have been performed in one or more of the LANL fast assemblies – Godiva, Jezebel, Jezebel-40, Flattop-25, Flattop-Pu and Big-10.
- New result reaction rates published for a wide variety of cross sections in FUND-IPPE-FE-MULT-RRR-001.
 - Accepted for publication in the 2009 edition of the ICSBEP Handbook
 - Model and calculations shown here are derived from the preliminary evaluation approved last Spring.

UNCLASSIFIED

Slide 16

LANL Actinide Evaluation Revisions – ²³⁶U Data Testing

- Flattop-25: An HEU sphere surrounded by a thick ^{nat}U reflector.
- Calculated ²³⁶U capture rate is now in better agreement with experiment.
- Right-to-left on the abscissa corresponds to increasing radial distance from the center of Flattop-25.

UNCLASSIFIED

Slide 17

LANL Actinide Evaluation Revisions – ²³⁷U Data Testing

- Barr71 = Flattop-25 measurements at r=1.11 cm (right) and r=13.97 cm (left).
- C/E near the core center is slightly improved with the new (PGY) evaluation, and remains good in the reflector.

UNCLASSIFIED

Slide 18

LANL Actinide Evaluation Revisions – ²⁴⁰Pu Data Testing

- Eigenvalue variation with ICSBEP Benchmarks
 - PMF1: Jezebel (95 a/o ²³⁹Pu, 4.5 a/o ²⁴⁰Pu bare sphere)
 - PMF2: "dirty" Jezebel (76 a/o ²³⁹Pu, 20 a/o ²⁴⁰Pu bare sphere)
 - PMF22: Russian (98 a/o ²³⁹Pu, 2 a/o ²⁴⁰Pu) bare sphere
 - PMF29: Russian (89 a/o ²³⁹Pu, 10 a/o ²⁴⁰Pu) bare sphere
 - In all cases, the benchmark model k_{eff} uncertainty is ~0.2%.
- PMF1 k_{eff}(ENDF/B-VII.0 & E70+new ²⁴⁰Pu): 0.99984(5); 0.99990(6)
- PMF2 k_{eff}(ENDF/B-VII.0 & E70+new ²⁴⁰Pu): 0.99992(3); 0.99963(6)
- PMF22 k_{eff}(ENDF/B-VII.0 & E70+new ²⁴⁰Pu): 0.99842(3); 0.99851(4)
- PMF29 k_{eff}(ENDF/B-VII.0 & E70+new ²⁴⁰Pu): 0.99558(7); 0.99552(3)
- Conclusion: Little change in calculated eigenvalues, but underlying ²⁴⁰Pu microscopic cross section data are fundamentally more accurate.

UNCLASSIFIED

LANL Actinide Evaluation Revisions – ²⁴⁰Pu Data Testing

- Barr71 = Flattop-25 measurements at r=1.11 cm (right) and r=13.97 cm (left).
- Fission C/E's near the core center and in the reflector are little changed with the new (PGY) evaluation.

UNCLASSIFIED

Slide 20

LANL Actinide Evaluation Revisions – ²⁴¹Am Data Testing

- Barr71 = Flattop-25 measurements at r=1.11 cm (right) and r=13.97 cm (left).
- Fission C/E's near the core center and in the reflector are little changed with the new (TK) evaluation.
- In the center of Jezebel, the
 ²⁴¹Am(n,γ)^{242g}Am ratio to ²³⁹Pu(n,f) C/E was
 0.96, it is now 0.99.

UNCLASSIFIED

Slide 21

FUND-IPPE-FE-MULT-RRR-001 Reaction Rates

	Calculated Ratio	Stdev (calculated ratio)	Measured Ratio	Stdev (measured ratio)	C/E	Stdev (C / E)
²³² Th(n,f) / ²³⁵ U(n,f)	0.03898	0.00002	0.0430	0.0013	0.907	0.027
²³³ U(n,f) / ²³⁵ U(n,f)	1.55457	0.00068	1.54	0.03	1.009	0.020
²³⁴ U(n,f) / ²³⁵ U(n,f)	0.72938	0.00039	0.790	0.024	0.923	0.028
²³⁶ U(n,f) / ²³⁵ U(n,f)	0.32151	0.00019	0.333	0.010	0.965	0.029
[²³⁶ U(n,f) - TK] / ²³⁵ U(n,f)	0.32157	0.00019	0.333	0.010	0.966	0.029
²³⁸ U(n,f) / ²³⁵ U(n,f)	0.16222	0.00011	0.165	0.005	0.983	0.030
²³⁷ Np(n,f) / ²³⁵ U(n,f)	0.81346	0.00044	0.771	0.023	1.055	0.031
²³⁹ Pu(n,f) / ²³⁵ U(n,f)	1.36031	0.00056	1.33	0.04	1.023	0.031
²⁴⁰ Pu(n,f) / ²³⁵ U(n,f)	0.82336	0.00044	0.877	0.026	0.939	0.028
[²⁴⁰ Pu(n,f) - PGY&PT] / ²³⁵ U(n,f)	0.81106	0.00044	0.877	0.026	0.925	0.027

	Calculated Ratio	culated Calculated (calculated ratio) Stdev Measured Ratio		Stdev (measured ratio)	C/E	Stdev (C / E)
²⁴¹ Pu(n,f) / ²³⁵ U(n,f)	1.32221	0.00059	1.29	0.04	1.025	0.032
²⁴² Pu(n,f) / ²³⁵ U(n,f)	0.67041	0.00036	0.658	0.020	1.019	0.031
²⁴¹ Am(n,f) / ²³⁵ U(n,f)	0.78156	0.00044	0.825	0.025	0.947	0.029
²⁴¹ Am(n,f) - TK] / ²³⁵ U(n,f)	0.78891	0.00044	0.825	0.025	0.956	0.029
²³² Th(n,g) / ²³⁵ U(n,f)	0.10194	0.00008	0.109	0.004	0.935	0.034
²³⁶ U(n,g) / ²³⁵ U(n,f)	0.11176	0.00015	0.123	0.006	0.909	0.044
[²³⁶ U(n,g) - TK] / ²³⁵ U(n,f)	0.12038	0.00016	0.123	0.006	0.979	0.048
²³⁸ U(n,g) / ²³⁵ U(n,f)	0.07779	0.00006	0.077	0.003	1.010	0.039
²³⁷ Np(n,g) / ²³⁵ U(n,f)	0.30066	0.00030	0.240	0.012	1.253	0.063
²³² Th(n,2n) / ²³⁵ U(n,f)	0.01084	0.00006	0.00924	0.00050	1.174	0.064
²³⁸ U(n,2n) / ²³⁵ U(n,f)	0.00954	0.00005	0.00916	0.00050	1.041	0.057

UNCLASSIFIED

FUND-IPPE-FE-MULT-RRR-001 Reaction Rates

	Calculated Ratio	Stdev (calculated ratio)	Measured Ratio	Stdev (measured ratio)	C/E	Stdev (C / E)		Calculated Ratio	Stdev (calculated ratio)	Measured Ratio	Stdev (measured ratio)	C/E	Stdev (C / E)
⁵⁰ Cr(n,g) / ²³⁵ U(n,f)	0.005469	0.000023	0.0057	0.0005	0.960	0.084	²⁷ Al(n,p) / ²³⁵ U(n,f)	0.002151	0.000004	0.00221	0.00015	0.973	0.066
⁵⁵ Mn(n,g) / ²³⁵ U(n,f)	0.003855	0.000014	0.00297	0.00015	1.298	0.066	⁴⁶ Ti(n,p) / ²³⁵ U(n,f)	0.007056	0.000013	0.0066	0.0003	1.069	0.049
⁵⁸ Fe(n,g) / ²³⁵ U(n,f)	0.003023	0.000014	0.00228	0.00009	1.326	0.053	⁴⁷ Ti(n,p) / ²³⁵ U(n,f)	0.009284	0.000007	0.0097	0.0005	0.957	0.049
⁵⁹ Co(n,g) / ²³⁵ U(n,f)	0.005853	0.000014	0.0064	0.0003	0.914	0.043	⁴⁸ Ti(n,p) / ²³⁵ U(n,f)	0.000180	0.000001	0.000180	0.000008	1.002	0.045
⁶⁴ Ni(n,g) / ²³⁵ U(n,f)	0.004754	0.000005	0.00185	0.00008	2.570	0.111	⁵⁴ Fe(n,p) / ²³⁵ U(n,f)	0.041785	0.000043	0.0447	0.0015	0.935	0.031
⁶³ Cu(n,g) / ²³⁵ U(n,f)	0.012043	0.000024	0.0114	0.0005	1.056	0.046	⁵⁶ Fe(n,p) / ²³⁵ U(n,f)	0.000616	0.000002	0.00061	0.00002	1.010	0.033
⁶⁵ Cu(n,g) / ²³⁵ U(n,f)	0.007464	0.000010	0.0076	0.0006	0.982	0.078	⁵⁹ Co(n,p) / ²³⁵ U(n,f)	0.000778	0.000002	0.00084	0.00004	0.926	0.044
⁹⁴ Zr(n,g) / ²³⁵ U(n,f)	0.009600	0.000016	0.0064	0.0004	1.500	0.094	⁵⁸ Ni(n,p) / ²³⁵ U(n,f)	0.055214	0.000052	0.055	0.003	1.004	0.055
⁹⁶ Zr(n,g) / ²³⁵ U(n,f)	0.004750	0.000100	0.00306	0.00015	1.552	0.083	²⁷ Al(n,a) / ²³⁵ U(n,f)	0.000460	0.000003	0.0004	0.0000	1.069	0.050
⁹⁸ Mo(n,g) / ²³⁵ U(n,f)	0.027100	0.000037	0.0193	0.0008	1.404	0.058	⁵⁴ Fe(n,a) / ²³⁵ U(n,f)	0.000533	0.000002	0.0005	0.0000	1.066	0.043
¹⁹⁷ Au(n,g) / ²³⁵ U(n,f)	0.100997	0.000179	0.105	0.005	0.962	0.046	⁵⁹ Co(n,a) / ²³⁵ U(n,f)	0.000096	0.000001	0.00010	0.00000	1.014	0.043
²⁴ Mg(n,p) / ²³⁵ U(n,f)	0.001016	0.000005	0.00090	0.00004	1.129	0.051	⁹² Mo(n,a) / ²³⁵ U(n,f)	0.000086	0.000000	0.00006	0.00001	1.560	0.142

UNCLASSIFIED

