Progress on Deuterium

Ken Kozier, Dan Roubtsov Chalk River Laboratories CSEWG, BNL, Nov.3-5,2009

- Background
- New nuclear-theory results
- Ongoing ZED-2 validation testing
- GELINA measurements
- Summary

Background

- R. Mosteller, LANL reported (CSEWG 2004) decrease in k of ~10 mk (1000 pcm) for HEU-fluoride/D₂O solution critical experiments, using ENDF/B-VI.5 (& later) ²H relative to ENDF/B-VI.4
 - Mainly due to changes made to the <u>energy-angle distributions for elastic</u> <u>scattering</u> (MF 4, MT 2) <3.2 MeV
- Initial tests for low-leakage, natural-uranium ZED-2 critical lattices at CRL showed low k impact (<1 mk), but noticeable effect (~0.6 mk) on <u>Coolant Void Reactivity</u> (CVR) simulation bias
 - M. Williams, ORNL TSUNAMI ACR-700 analysis also demonstrated high sensitivity of CVR to ²H <u>elastic scattering cross section</u> (but can't address angular distributions)
- AECL contracted L. Townsend, U. of Tennessee to review the experimental ²H(n,n)²H energy-angle database
 - Conclusion: old, sparse, inconsistent, tended to support increased backscatter relative to ENDF/B-VII.0; new measurements recommended
 - NEA's High Priority Request List submission (2006)
- AECL commissioned new three-body nuclear-theory calculations
- <u>Deuterium Data Workshop</u> held in Deep River on May 14, 2009
 AECL FACL

New nuclear-theory results

(L. Canton - Universita di Padova; J. Svenne - University of Manitoba)

- 8 new data sets [$\sigma_{elastic}$ for 74 CM cosines at each energy]
 - Bonn-B nucleon-nucleon potential using Alt-Grassberger-Sandhas (AGS) equations (73 energies; 1 keV to 29 MeV); may be the best potential
 - -Bonn-B with 3-nucleon forces (3NF) (50 energies; 1 keV to 29 MeV)
 - CD-Bonn potential using AGS (73 energies; 1 keV to 29 MeV)
 - CD-Bonn with 3NF (51 energies; 1 keV to 29 MeV)
 - Bonn-B with magnetic moment (MM) interaction [no 3NF] (69 energies; 50 keV to 29 MeV)
 - AV18 potential using Faddeev equations (32 energies; 20 keV to 3 MeV)
 - -Bonn-B using Faddeev (32 energies; 20 keV to 3 MeV)
 - CD-Bonn using Faddeev (32 energies; 20 keV to 3 MeV)

New angular scattering probability distributions P(E,µ)

- Small differences among new data <~0.9% at 1 MeV but negligible (<0.002%) at 1 kev
- Noticeably more backscatter than ENDF/B-VII.0

Low E scattering cross section (T=0 K)

- New theory results too high except for BonnB & BonnB-MM when using linear extrapolation of Ln($\sigma_{elastic}$) from 50 keV
- Supplementary results down to 1 keV higher still; <u>scaling</u> needed to correct for TM forces & get correct value for triton binding energy

Cross section values calculated from nucleartheory based scattering lengths

- H. Witała, A. Nogga, H. Kamada, W. Glockle, J. Golak & R. Skibinski, <u>Modern nuclear force predictions for the neutron-deuteron</u> <u>scattering lengths</u>, PHYSICAL REVIEW C, 68, 034002 (2003)
- neutron-deuteron (*nd*) doublet (²a_{nd}) & quartet (⁴a_{nd}) scattering lengths calculated based on nucleon-nucleon (*NN*) interactions: CD Bonn 2000, AV18, Nijm I, II, & 93, alone & in selected combinations with Tucson-Melbourne (TM), a modified version thereof, TM99, & Urbana IX three-nucleon (3*N*) forces
- <u>48 combinations</u> involving: CD Bonn 2000, CD Bonn 2000+TM, CD Bonn 2000+TM99, CD Bonn 2000+Urb; AV18, AV18+TM, AV18+TM99, AV18+UrbIX; Nijm I, Nijm I+TM, Nijm I+TM99; Nijm II, Nijm II+TM, Nijm II+TM99; Nijm 93, Nijm 93+TM

Minimum: 3.3638 b (-0.6%) Average: 3.3899 b Maximum: 3.4450 b (+1.6%)

Low E scattering cross section (T=0 K)

- A. Plompen review of expts. (2009): weighted average 3.390(11) b [±0.3%]; identical to Dilg et al. (1971)
- But 'low fidelity' uncertainty ~2%; would allow TSUNAMI to adjust it
- <u>Other libraries</u> at 10⁻⁵ eV:
 - ENDF/B-VI-VII.0: 3.395 b
 - ROSFOND (2008): 3.390 b
 - JENDL-3.3: 3.36234 b
 - ENDF/B-IV (IAEA Archive): 3.350 b [-1.2%]
 - EVAL-JUN67 B.R.LEONARD, JR. AND K.B.STEWART; REV-NOV74
 - ENDF file used Legendre polynomials for MF4, MT2

BRC-2008 ²H evaluation & reactivity impact

- R. Lazauskas & B. Morillon, CEA-Bruyéres-le-Chatel obtained similar nuclear-theory results using AV18 (see JEFFDOCs-1088 & 1266); may be adopted for JEFF
- k_{eff} increases by ~16 mk for HST-04

ZED-2 CVR validation testing refinements: thermal energies

- D-in-D₂O Thermal Scattering Law (TSL; S(α,β)) data
 - R. MacFarlane, LANL <u>LEAPR</u> input file <u>interpolated</u> (phonon spectrum & s(kappa)) <u>to nearest ^oC</u> [4^oC degree range for ZED-2 expts. studied]; σ_{elastic}(0.025 eV) changed for comparison libraries
 - 'Fast' H2 & DD2O-TSL ACE files prepared with NJOY for each T & ²H ENDF file; tol.=0.0001, 64 energies, 16 angles
 - Strong anisotropy for DD2O at $\sim 10^{-3}$ eV
- Other data ENDF/B-VII.0 at 300 K

H-2 (in D2O) at T = 293.6, 350.0 K (= 20.44, 76.84 deg. C) from ENDF/B-VII.0 and H-2 (in D2O) at T = 323.6, 373.6 K (= 50.44, 100.44 deg. C) from JEFF-3.1; NJOY99up296

ZED-2 CVR validation testing refinements: photonuclear data

 <u>Photonuclear data</u> (LANL-T2 ENDF/B-VII.0 g-files & IAEA-KAERI) added to account for (γ,n) reactions

– Increases k by ~0.4-0.7 mk (94% due to ²H); little impact on CVR bias

- MCNP5 statistical uncertainty: k <±0.039 mk; CVR <±0.051 mk
- 'Average' CVR bias: simplistic figure of merit used to gauge systematic trends

 Typically k bias increases linearly with calculated leakage [CVR bias = k_{air}-k_{cooled}]
- Overall CVR bias reduced by ~0.3 mk, but may need to refine H₂O TSL also

MCNP5 CVR simulation bias (mk)							
ZED-2 Case	ENDF/B-VII.0 (CSEWG 2008)	ENDF/B-VII.0 reference (multiple D ₂ O TSL, photoneutron)	ENDF/B-VII.0 reference (multiple D ₂ O TSL, <u>NO</u> photoneutron)				
SEU/RU UO ₂ : 20-cm air/H ₂ O	1.59	1.13	0.98				
SEU/RU UO ₂ : 24-cm air/H ₂ O	3.73	3.06	3.18				
NU-UO ₂ /ZEEP: air/D ₂ O	0.68	0.70	0.62				
NU-UO ₂ /U-19: air/D ₂ O	1.19	1.12	0.96				
Average	1.80	1.50	1.43				

ZED-2 CVR bias ²H validation testing results

MCNP5 CVR simulation bias (mk): New nuclear-theory P(E, μ) + ENDF/B-VII.0 ² H comparison								
ZED-2 Case	BonnB	BonnB-3NF	CD-Bonn	CD-Bonn- 3NF	BonnB-MM	AV18-Fad.	BonnB- Fad.	CD-Bonn- Fad.
SEU/RU UO ₂ : 20-cm air/H ₂ O	1.48	1.24	1.33	1.41	1.32	1.41	1.53	1.38
SEU/RU UO ₂ : 24-cm air/H ₂ O	3.45	3.50	3.49	3.50	3.47	3.43	3.62	3.58
NU-UO ₂ /ZEEP: air/D ₂ O	1.01	1.10	1.13	1.01	1.05	1.01	1.04	1.01
NU-UO ₂ /U-19: air/D ₂ O	1.45	1.43	1.42	1.35	1.44	1.33	1.49	1.47
Average	1.85	1.82	1.85	1.82	1.82	1.80	1.92	1.86

	MCNP5 CVR simulation bias (mk): ² H library comparison							
ZED-2 Case	ENDF/B-VII.0 reference	ENDF/B-VII.0 isotropic	ENDF/B-IV	JENDL-3.3	ROSFOND			
SEU/RU UO ₂ : 20-cm air/H ₂ O	1.13	-0.15	-0.42	0.74	0.97			
SEU/RU UO ₂ : 24-cm air/H ₂ O	3.06	1.70	2.04	3.24	3.36			
NU-UO ₂ /ZEEP: air/D ₂ O	0.70	-0.40	0.98	1.27	1.18			
NU-UO ₂ /U-19: air/D ₂ O	1.12	-0.10	1.23	1.49	1.67			
Average	1.50	0.26	0.96	1.69	1.80			

UNRESTRICTED / ILLIMITÉ

Note:

• Isotropic ENDF/B-VII.0 demonstrates sensitivity; right answer for the wrong reason?

• ENDF/B-IV, JENDL-3.3 & ROSFOND ²H include other changes besides elastic scattering

• MF6, MT16 from ENDF/B-VII.0 was used to process ROSFOND with NJOY

12

Comparison of ²H(n,n)²H 'fast' anisotropy

- Used cumulative scattering probability tables from ACE files to compare <u>ratio of backward-to-forward scattering</u> in centre of mass reference frame
- Main problem with ENDF/B-VI.5 to VII.0 appears to be inadequate energy-angle numerical representation <1 MeV; ENDF/B-IV more refined
- Low CVR bias obtained for low 'integrated anisotropy' (with same $\sigma_{el}(E)$)

UNRESTRICTED / ILLIMITÉ

GELINA ²H(n,n)²H measurements

(Arjan Plompen, Mihai Stanoiu, Nikolay Nankov & Chariklia Rouki)

- Initial measurements in July using C₆D₆ demonstrated need for CD₂; sample container & high relative amount of C suppress D contribution significantly
- AECL radiochemist Raghu Rao guided synthesis of deuterated polyethylene (CD₂: 99.999% ²H) by Polymer Science Inc., Montreal & molding into a 3 mm disc at National Research Council of Canada's Industrial Materials Institute, Boucherville; arrived at IRMM Sept. 30
- Development of an MCNP model of GELINA set-up in progress (Paul Carlson, Acsion Industries Inc., Pinawa, MB)
- IRMM also considering ²H recoil measurements using a Time Projection Chamber

Heavy hockey pucks anyone?

Preliminary GELINA results using C₆D₆

 Preliminary C₆D₆ data show qualitatively <u>less</u> anisotropy than ENDF/B-VII.0 & nuclear-theory calculations C6D6 target response at 120° for 800 keV neutron

One week beam @300m

Summary for deuterium

- Nuclear-theory elastic scattering cross sections require scaling (in progress); sensitivity of CVR bias to P(E,μ) from different potentials, 3NF & MM interaction is small
- Small reduction in σ_{el} from 3.395 b to ~3.390 b at low E may be warranted from both theory & experiment
- ZED-2 simulation refinements (D₂O TSL & photonuclear data) moderately significant (reduces CVR bias ~0.3 mk; increases k_{eff} ~0.4-0.7 mk), but may need to refine H₂O TSL similarly (increases CVR bias)
- CVR bias sensitive to <u>both</u>²H elastic scattering cross section value [prefer lower] & angular distributions [prefer isotropic], but there could be ...
 - a systematic error due to some behaviour that is incorrectly modelled as the ZED-2 D_2O moderator level changes
 - residual nuclear data issues with ²³⁵U &/or ²³⁸U
- Energy grid for ²H MF4, MT2 inadequate in ENDF/B-VII.0
- New measurements at GELINA using CD₂ key to further progress
 - Preliminary results using C₆D₆ show <u>less</u> anisotropy

