

Nuclear Validation Efforts at Livermore

M.-A. Descalle, R. Barnowsky, D. Brown, J. Pruet

CSEWG 3-5 Nov 2009

S&T - PLS/Physics Division

Lawrence Livermore National Laboratory

We are releasing ENDL2009; we use the best available evaluations ~ 50% from ENDF/B-VII.0

2

Our test suite relies on different types of tests

- We developed models of benchmark experiments for two codes
 - Amtran, deterministic transport, and ndf library
 - Mercury, Monte Carlo transport, and mcf library
- Several types of tests
 - Simple sanity checks to ensure the libraries are running
 - Criticality benchmarks
 - Time-of-flight experiments: LLNL pulsed spheres & oktavian spheres
 - Fission and activation ratios

New evaluations in ENDL2009 that are being

considered for ENDF/B-VII.1 & 2

		ENDF/B.VII.2	Crit	TOF	x ratio	source
No tests available In our test suite	ENDF/B.VII.2	46, 47,48,49, ⁵⁰ Ti	x	x		ENDF/A (7/2009)
ENDF-B.VII.1 64, 66, 67, 68, 70 Zn 78Kr 240Am 239U	³⁶ Ar	⁵⁵ Mn			x	ENDF/A (7/2009)
	^{74, 75} As	⁵⁷ Fe	x	х		⁵⁷ Fe LLNL-2009
	⁸⁷ Rb	⁵⁹ Co	x		x	LLNL-2009
	^{90, 96} Zr	⁷⁵ As			x	LLNL-2009
	¹⁰³ Rh	⁸⁹ Y			x	ENDF/A (7/2009)
	¹¹³ Cd	⁹⁷ Mo	x			ENDF/A (7/2009)
	^{123, 124} Xe ^{174, 176-180} Hf	¹⁶⁹ Tm			x	TENDL-2008
		^{180 , 181} Ta		x		LLNL-2009
	Pt	180, 182-184, 186 W	x	x	x	IAEA-W-CRP-2009
	²⁰³⁻²⁰⁵ TI	^{185, 187} Re			x	LLNL-2009
	Yb	204, 206, 207, 208Pb	x			LLNL-2009
	²⁰⁹ Bi			x	JEFF-3.1	
We have tests for about		²³⁷ Np			x	JENDL-AC-2008
- half of these evaluations		²³⁷ U			x	LLNL-2009
		^{240, 241, 242} Pu	x			ENDF/A –(9-2009)

W (IAEA-W-CRP-2009)

With the IAEA evaluation, the criticality simulations are within 3 sigmas of the measurements, and the pulsed sphere spectrum shows a significant improvement.

Oktavian Sphere: W

Ta (LLNL-2009)

AI (LLNL-2009)

		benchmark	benchmark	Mercury	
Case	reflector	keff	dkeff	keff	dkeff
Hmf084_1	AI	0.9994	0.0019	0.9994	0.0001
hmf084_2	AI2O3	0.9994	0.0021	0.9997	0.0001
hmf084_15	AI2O3	0.9995	0.0021	0.9982	0.0001
pmf_009	AI	1.0000	0.0027	1.0066	0.0001

LLNL Pulsed-sphere experiment

ENDL2009 & ENDF/B-VII.0 evaluations are so similar that it is no surprise that they perform identically

⁵⁷Fe (LLNL-2009)

¹⁹⁷Au (LLNL-2009)

²⁴⁰Pu(ENDF-A), ²⁴¹⁻²⁴²Pu(JENDL-AC)

Criticality benchmarks

1		benchmark	benchmark	Mercury		1 sigma	2 sigma	3 sigma
Case	reflector	keff	dkeff	keff	dkeff			
hmf084_1	Al	0.9994	0.0019	0.99936	0.00010			
PMF09	Al	1.0000	0.0027	1.00660	0.00010	fail	fail	
hmf084_15	AI2O3	0.9995	0.0021	0.99816	0.00010			
hmf084_20	AI2O3	0.9994	0.0021	0.99975	0.00010			
hmf084_16	Ве	0.9994	0.002	0.99757	0.00010			
hmf084_3	Ве	0.9993	0.0021	0.99707	0.00010	fail		
PMF019_1	Ве	0.9992	0.0015	0.99877	0.00010			
PMF018	Ве	1.0000	0.0030	0.99703	0.00010			
hmf084_26	Be inner reflec	0.9993	0.0022	0.99887	0.00010			
hmf084_27	Be inner reflec	0.9994	0.002	0.98258	0.00010	fail	fail	fail
hmf084_17	Со	0.9995	0.0019	1.02744	0.00010	fail	fail	fail
hmf084_5	Со	0.9993	0.0021	1.05147	0.00010	fail	fail	fail
HMF073	Cu	1.0082	0.0003	1.01229	0.00013	fail	fail	fail
hmf084_18	Cu	0.9995	0.0022	0.99779	0.00010			
hmf084_6	Cu	0.9994	0.0024	0.99879	0.00010			
PMF040	Cu	1.0000	0.0038	1.00138	0.00010			
hmf085_4	Cu-Ni-Zn alloy	0.9996	0.0029	1.01182	0.00010	fail	fail	fail
hmf085_1	Cu(outer)	0.9998	0.0029	1.00028	0.00010			
hmf085_2	Cu(outer)	0.9997	0.0031	1.00441	0.00010	fail		
hmf085_3	Fe (outer)	0.9995	0.0046	0.99824	0.00010			
hmf084_20	Мо	0.9995	0.0025	1.00343	0.00010	fail		
hmf084_8	Мо	0.9994	0.0034	1.00913	0.00010	fail	fail	
hmf084_21	MoC2	0.9995	0.0045	1.00167	0.00010			
hmf084_9	MoC2	0.9993	0.0054	1.00532	0.00010	fail		
HMF03	Ni	1.0000	0.0030	1.00837	0.00010	fail	fail	
hmf084_10	Ni	0.9993	0.0022	1.00131	0.00010			
hmf084_22	Ni	0.9994	0.002	0.99850	0.00010			
hmf064_1	Pb	0.9996	0.0008	1.01636	0.00010	fail	fail	fail
PMF035	Pb	1.0000	0.0016	1.00798	0.00010	fail	fail	fail

Godiva: (n,f) and (n,g)

13

BigTen: (n,f), (n,2n) and (n,g)

Big ten: central fission ratios and activation ratios Amtran Simulations/ Endl2009.b2

Jezebel: (n,f), (n,2n) for Tm169 and (n,g)

JEZEBEL: central fission ratios and activation ratios Amtran Simulations/ Endl2009.b2

- ENDL2009:
 - Poor $S_{\alpha\beta}$ support means poor performance for thermal assemblies (PST11, HMF19, PMF11, PMF23, PMF24)
 - URR treatment in data, but not fully tested in production code
- Criticality TOF Fission and Activation ratios
 - Pu: use evaluation from JENDL/AC-2008
 - W: the IAEA evaluation gives the best results so far;
 - Ta: improved TOF spectrum in the 10-12 MeV range.
 - ²⁷AI, Ti, ⁵⁷Fe: results are similar to ENDF/B-VII.0
 - Pb may be a problem
 - ⁵⁹Co needs work
 - ⁸⁹Y gives low estimates for (n,g) and (n,2n)

Quite a few tests were added this year... more to come

- We added tests for structural materials
 - Criticality, based on Red Cullen's TART test suite
 - Central Fission ratios and Activation ratios (S_n code)
 - Fusion Shielding Benchmarks
 - Oktavian spheres: Ni, Si, W; and AI (in progress)
 - FNS: V (in progress)
- For FY10 we plan to develop models of:
 - Bethe and Wyman spheres
 - Central Fission ratios and Activation ratios (Monte Carlo code)
 - LANL Traverse measurements

