J^π from (n,γ) Measurements and Statistical Model Calculations

Richard B. Firestone

Lawrence Berkeley National Laboratory

(n,γ) E=Thermal Data Considerations

- Thermal (n,γ) data are usually incomplete except for light (Z<20) isotopes. Beware of papers that normalize γ-ray intensities to ΣIγ(GS)=100.
- Primary γ-rays are mainly E1 or M1. E2 γ-rays are much weaker

²⁰⁹Bi(n, γ): 4604.7(4⁻,5⁻) \rightarrow 433.5(7⁻) I_{γ}=30% [E2]

It is improbable that the strongest primary γ -ray is E2. Most likely J^{π}(433.5)=6⁻ and the J^{π} assignments of lowlying levels in ²¹⁰Bi are incorrect.

 Statistical model calculations can provide important information about spin assignments.

The decay schemes of low-Z isotopes are often complete.

USNDN Meeting – November 3-6, 2009

BERKELEY LAB

Cross section balance for ²⁴Mg(n,γ)²⁵Mg

Cross section balance for the ²⁵Mg neutron capture decay scheme

E(Level)	σ(in)	o(out)	Δσ
0	0.0536(14)	0.0	0
585.01(3)	0.0406(11)	0.0398(14)	0.0008(18)
974.68(3)	0.0157(4)	0.0158(4)	0.0001(6)
1964.69(10)	0.00022(2)	0.00026(3)	0.00004(4)
2563.35(4)	0.00202(10)	0.00179(7)	0.00023(12)
2801.54(9)	0.00047(4)	0.00061(5)	0.00013(6)
3413.35(3)	0.0411(14)	0.0416(11)	0.0005(18)
4276.33(4)	0.0105(4)	0.0107(3)	0.0002(5)
4358.2(5)	0.00009(2)	0.0	0.00009(2)
5116.37(15)	0.00038(4)	0.00027(3)	0.00011(5)
7330.53(4)	0.0	0.0539(14)	0.0539(14)
σ(Mughabghab[23])		0.0536(15) b	
σ (Measured, average)		0.0538(14) b	

High-Z Data

$^{105}Pd(n,\gamma)^{106}Pd$ Level Feedings

E(level)	Jπ	Σσ _γ (in)	Σσ _γ (out)	ΔΣσ
0	0+	20.26	•	
511.844	2+	13.88	17.91	4.03
1128.04	2+	2.371	4.263	1.892
1133.79	0+	0.227	0.565	0.338
1229.2	4+	1.630	3.479	1.849
1557.67	3+	1.183	2.142	0.959
1562.16	2+	0.312	1.869	1.557
1706.44	0+	0.012	0.193	0.181
1909.39	2+	0.063	0.724	0.661
1932.37	4+	0.217	0.590	0.373
2001.56	0+	0.029	0.118	0.089
2077.1	6+	0.001	0.103	0.102
2077.37	(4)+	0.057	0.440	0.383
2084.39	-3	0.123	1.033	0.910
2242.4	2+	0.026	0.499	0.473
2278.47	0+	0	0.056	0.056
2282.89	4+	0.0007	0.275	0.274
2306.01	-3	0.053	0.542	0.489
2308.73	2+	0.000	0.283	0.283
2350.96	4+	0.018	0.304	0.286
2366.09	5+	0.003	0.116	0.114
2397.37	(5)-	0.055	0.263	0.209
2401	(2-,3-)	0.037	0.300	0.263
2439.11	2+	0.065	0.293	0.227
2472.09	0+	0.000	0.055	0.055
2484.76	(1-)	0.043	0.253	0.211
2500.01	-2	0.028	0.296	0.267
2578.64	(4-)	0.00004	0.221	0.221
9561.4	2+,3+		0.554	

For Z>20 measured neutron capture γ -ray decay schemes are generally incomplete due to unresolved continuum γ -rays. $\sigma_0=21.0\pm1.5$ b (Mughabghab)

 σ_{γ} (primary γ -rays)=0.55 b

 σ_{γ} (secondary γ -rays, observed)=20.3 ±0.3 b

 σ_{γ} (secondary γ -rays, statistical =1.4 ±0.3 b

 σ_0 =21.7±4 b

¹⁰⁵Pd(n, γ)¹⁰⁶Pd level feeding cross sections calculated from EGAF data.

Statistical Model Calculations

The (n,γ) continuum feeding is statistical so it can be calculated if

- 1. σ_{γ} deexciting levels below a cutoff energy E_{crit} is complete. \downarrow
- 2. Primary σ_{γ} populating the levels below E_{crit} from the capture state is complete. \downarrow

3. J^{π} of levels below E_{crit} are well known.

4. Level density $\rho(E > E_{crit}, J)$ is known.

5.Photon strength $f(E_{\gamma})$ deexciting levels above E_{crit} is known $\downarrow \downarrow$

USNDN Meeting – November 3-6, 2009

DICEBOX Calculations

DICEBOX is a Monte Carlo code by F. Becvar and M. Krticka. It generates complete simulated neutron capture decay schemes constrained by known nuclear properties and statistical models.

- A. Discrete primary and secondary σ_v data from EGAF
- B. J^{π} data for E<E_{crit} from Reaction Input Parameter Library (RIPL)
- C. Level density models

 - 1. Constant temperature (CT) 2. Back-shifted Fermi (BSF) model $\rho(E, J) = \frac{f(J)}{T} \exp(\frac{E E_0}{T})$ $\rho(E, J) = f(J) \frac{\exp(2\sqrt{a(E E_1)})}{12\sqrt{2}\sigma_c a^{1/4}(E E_1)^{5/4}}$
- D. El Photon Strength
 - $f_{\rm BA}^{(E1)}(E_{\gamma}) = \frac{1}{3(\pi\hbar c)^2} \frac{\sigma_G E_{\gamma} \Gamma_G^2}{\left(E_{\gamma}^2 E_G^2\right)^2 + E_{\gamma}^2 \Gamma_G^2}$ 1. Brink-Axel (BA)
 - 2. Kadmenski, Markushev, Furman (KMF) for spherical nuclei
 - 3. Kopecky et al generalized Laurentian (GLO), temperature dep.
- E. M1 Photon Strength
 - 1. Single Particle (SP), $f^{(E_1)}/f^{(M_1)}=5-7$ or $f(M_1)=1.2\times 10^{-8} MeV^{-3}$
 - 2. Spin-Flip (SF), Laurentzian resonance $\approx 8.5 \text{ MeV}$, $\Gamma_{SF} \approx 4 \text{ MeV}$

Population/Depopulation Plot

Admixture of capture state J^{π} values determined by least-squares fit.

rrrr

BERKELEY

.AB

Significant deviations from the line can be indications of problems with input RIPL nuclear structure data. Either J^{π} or γ -ray branching may be wrong.

Data Problems: J^π Errors

Statistical model calculations can be used to constrain J^{π} values.

2306-keV level feeding is consistent with $J^{\pi}=3^{-}$ not $J^{\pi}=4^{-}$ adopted in ENSDF on basis of $\gamma\gamma(\theta)$.

2397-keV level feeding is consistent with $J^{\pi}=4^{-}$ when additional γ -ray is placed. Assignment of $J^{\pi}=5^{-}$ in ENSDF is based on L=(5) in (p,t).

Level Scheme Errors

-Mistaken level assignment

1904.3 keV level assigned using the Ritz principal.

 $\sigma_{\gamma}(1904)_{expt}=0.12 \text{ b}$ $\sigma_{\gamma}(1904)_{DICEBOX}=1.13 \text{ b}$

Reassigning placement of the 347and 776-keV γ -rays to deexcite the 1909.4-keV level gives

> σ_γ(1909)_{expt}=0.62 b σ_γ(1909)_{DICEBOX}=0.83 b

Resolving *γ***-ray Doublets**

Doublet cross section ($\sigma_{848.5\gamma}$ =0.448 b) populating the 4⁺ and 6⁺ can be divided based on DICEBOX calculation.

Eg (keV)	Transition	Calculated cross section (barns)
848.6	4+→4+	0.345±0.022
848.3	6+→4+	0.103±0.022

DICEBOX Population/Depopulation plot for $^{184}W(n,\gamma)^{185}W$ data. Levels at 66- and 188-keV have $J^{\pi}=5/2^{-}$ in ENSDF. Statistical model calculations indicate that both levels are more consistent with 7/2-. Many other "definite" J^{π} values in ¹⁸⁵W must be revised.

ERKEL

.AB

¹⁸⁵W J^π Justifications

Level	J ^π (ENSDF)	ENSDF J^{π} justification	New J ^π
0.0	3/2-	Atomic beam	3/2-
23.5	1/2-	1/2 [_] ,3/2 [_] (n,γ), DWBA	3/2-
65.9	5/2-	L=3 in (d,t),(d,p), M1+E2 to 3/2-	7/2-
		$\alpha(L)_{exp}=10(2), 11(3). \alpha(L)_{M1}=2.11, \alpha(L)_{F2}=16.6$	
		$\alpha(M)_{exp} = 3.5(15). \ \alpha(M)_{M1} = 0.48, \ \alpha(M)_{E2} = 4.2$	
		ICC(65.9 γ) is also consistent with E2	
93.3	3/2-	L=1 in (d,t),(d,p)	3/2-
173.7	7/2-	M1+E2 to 5/2 ⁻ , E2 to 3/2 ⁻ (GS)	7/2-
<u>187.9</u>	5/2-	L=3 in (d,t),(d,p), γ-ray to 1/2-	7/2-

J=L+1/2 appears to be favored in (d,t),(d,p) reactions

Conclusions

- Statistical model calculations provide an important check of J^{π} assignments
- "Definite" J^{π} assignments may be wrong
- New publications using statistical $J^{\boldsymbol{\pi}}$ arguments are coming
- Simple statistical arguments should be used by evaluators when adopting J^{π} values.
- An evaluator code for doing statistical calculations would be useful.

