

Evaluation of ²³Na Cross Sections for Nuclear Data Assimilation

M.T. Pigni, M. Herman, C.M. Mattoon, S.F. Mughabghab, P. Obložinský National Nuclear Data Center, Brookhaven National Laboratory Upton, NY 11973-5000 USA

5th November, 2009

Brookhaven Science Associates

Introduction

▷ Introduction

Assumptions Procedures Approach Model parameters Sensitivities Conclusions Definition of Nuclear Data Assimilation (NDA)

(1)
$$G + \delta G \to \frac{\partial G}{\partial \sigma} \to \frac{\partial \sigma}{\partial a}$$

- ✓ Importance of NDA (correlation from a model): it is ideally possible to create validated files which are physically consistent.
- ✓ Goal is to generate ENDF file fully based on nuclear model parameters
 - Not trivial because there are deficenties in nuclear models
 - ENDF format important because independent from group energy structure

Assumptions

Introduction Assumptions Procedures Approach Model parameters Sensitivities Conclusions

- EMPIRE can reasonably reproduce ENDF/B-VII.0 ²³Na cross sections on multigroup level with a proper set of nuclear physics parameters $\mathbf{p} = \{p_1, \dots, p_k\}$, including both Resolve Resonance Region (RRR) and fast neutron region.
- ✓ Covariance matrix of parameters p_k can be estabilished, at least, as diagonal matrix containing Δp_k
- ✓ Calculate sensitvities in multigroup representation for the above set of parameters
- ✓ There is a clean integral experiment of reactor quantity R which can provide sufficient feedback to update evaluation

Data Assimilation: Procedures

Introduction Assumptions Procedures Approach Model parameters Sensitivities Conclusions Calculate parameter sensitivities, $S_{Ik} = \partial \sigma_I / \partial p_k$, where σ_I is multi-group cross section in the *I*-th bin.

Calculate integral sensitivities, $D_I = \partial R / \partial \sigma_I$, and then

$$\frac{\partial R}{\partial p_k} = \sum_I D_I S_{Ik}$$

✓ Constrained by integral quantity uncertainty

$$(\Delta R)^2 = \sum_{k\ell} \frac{\partial R}{\partial p_k} \langle \Delta p_k \, \Delta p_\ell \rangle \frac{\partial R}{\partial p_\ell}$$

Data Assimilation: Procedures

Introduction Assumptions Procedures Approach Model parameters Sensitivities Conclusions ✓ Parameter sensitivity matrices, $S_{Ik} = \partial \sigma_I / \partial p_k$, in group structure representation are obtained by

AFCI Physics working group 2009 *Upton, USA*

Data Assimilation: Procedures

Introduction Assumptions Procedures Approach Model parameters Sensitivities Conclusions

$$S_{Ik} = \frac{\sigma_I^+ - \sigma_I^-}{2\Delta p_k} = \sum_i \alpha_{Ii} \frac{\sigma_i^+ - \sigma_i^-}{2\Delta p_k}; \qquad \alpha_{Ii} = \phi_i / \sum_i \phi_i$$
$$\langle \Delta \sigma_I \Delta \sigma_J \rangle = \sum S_{Ik}^T \langle \Delta p_k \Delta p_\ell \rangle S_{J\ell}$$

 $\langle \Delta p_k \Delta p_\ell \rangle$ is the covariance matrix of parameters in RRR and fast neutron region.

 $k\ell$

- In RRR uncorrelated parameters where their uncertainties are taken from ATLAS (S.F. Mughabghab)
- In Fast neutron region uncertainties and correlations of parameters derived from KALMAN code

Approach adopted for ²³**Na**

NNDC

Upton, USA

Approach adopted for ²³**Na**

AFCI Physics working group 2009 Upton, USA

Approach adopted for ²³**Na**

- High-resolution experiments contains fluctiations well into MeV region
- We were able to reproduce fluctuations via EMPIRE parameterization. It is complicated and time comsuming.
- Select parameters p_k and their covariances so that realistic cross section uncertainties are obtained (not trivial!)

Model Parameters

Introduction Assumptions Procedures Approach Model parameters Sensitivities Conclusions

- In Resonance resolved region (Multi-level Breit Wigner), parameters $(E_0, \Gamma_n, \Gamma_\gamma)$ for 41 resonances (up to 1 MeV), and related uncertainties = 103 parameters.
- In fast neutron region (optical model, Hauser fashbach, preequilibrium exciton model) = 31 parameters
- ✓ Fast neutron region (tuning) = 2 parameters

Covariance analysis performed (KALMAN) including selected experiments \rightarrow covariance in model parameter space produced.

Sensitivities and model parameters

AFCI Physics working group 2009 *Upton, USA*

Conclusions

- □ Cross section calculations (EMPIRE) using ENDF/B-VII.0 as reference
- Covariance analysis (KALMAN) to obtain realistic cross section uncertainties and related covariances. This provides also covariances in model parameter space.
- □ Sensitivities to 136 parameters were calculated and supplied to Idaho National Laboratory.

