
Yesterday's Technology for Tomorrow!

Data Trees for Nuclear Data

Structure of a Tree

 A Tree has a trunk

 From the trunk comes
a Branch

 That Branch can have
one or more smaller
Branches

 The smallest
Branches end in
Leaves

Definition of a Data Tree

 “In computer science, a tree is a widely-used

data structure that emulates a hierarchical tree

structure with a set of linked nodes” Wikipedia

 IMPORTANT DISTINCTION: ENSDF is already

loosely structured as TREE but it isn't a DATA
TREE

 A DATA TREE is a specific way of storing data

in a linked list

Structure of a Data Tree

 A data tree has the familiar structure of an
actual tree, hence the name

 Data Trees have large branches, smaller
branches and terminate in leaves

 The leaves are the primitive data types,
integers, doubles, strings, where the data
resides

 The branches are the superstructure and don't
themselves contain data, they're the (important)
scaffolding

What Does a Data Tree Look Like?

Role of the Interpreter Program

 The data is structured in a linked list, it is not a-
priori intelligible if you simply open the tree file
in a text editor

 You need a program to access and interpret the
tree

 The interpreter can be a complex Graphical
User Interface (GUI) or a simple command line
access to the data

Data Tree Made in ROOT as Viewed in a
Text Editor

root^@^@Ì°^@^@^@d^@^@^RÕ^@^@^R<9a>^@^@^@;^@^@^@^A^@^@^@B^D^@^@^@^A^@^@
^B<96>^@^@^O<9f>^@^AÉ{<95>^@Ê>^QÞ<97>^W pÇ<82>¾ï^@^@^@^@^@^@^@^@^@^@^@
^@~^@
^D^@^@^@M:Êâp^@1^@^A^@^@^@d^@^@^@^@^ETFile^OENSDF_Tree.root^@^OENSDF_Tre
e.root^@^@^E:Êâp:Êâp^@^@^@e^@^@^@B^@^@^@d^@^@^@^@^@^@^R5^@^AÉ{<95>^@Ê>
^QÞ<97>^W pÇ<82>¾ï^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@_^Cì^@^@^@^P:Êâp^@O^
@^@^@^@^@^@^@^@^@â^@^@^@^@^@^@^@d^GTBasket^LLevel_Energy^Dtree^@^B^@^@}
^@^@^@^@^H^@^@^@^B^@^@^@_^@^@^@^@^@^@^@^@^@@<98>^P^@^@^@^@^@^@^
@^AU^@^D^@^@^C^N:Êâp^@0^@^A^@^@^AA^@^@^@d^ETTree^Dtree ENSDF
treeZL^H^\^A^@^N^C^@x^A<95>P±J^CA^P}ÙS9Î AH^QHÀJ<84>^Tþ<81>YÂÅ*¤1}^Ha^S^KIq<88>
(ø3~<81>¿â^Oh¥<9d>Mêøv²^S¼<85>^Kd^NnÞ¼y;;o-
<92>^L^M^K´QãÇH<80>ôà¡p.^[<8c>nó<9b>s^OÙO¥O^Mñ<91>W&?D^Y<8c>ç{¯Ð0^AL¢<8c>Þ¯J$·B
õýñÖðPs <81>ÃÕç^F<9f>ö­<85>ér1ÝOx)Ø8[3Æýbº<9c>Ý<81>µÁ±^E.e]i^Gõ¡{t÷<93>ÁÒ^U<8b>§<9
3>ÿÅUNm°ãç^@/ÔKÈ|"5<94>^EÞ'å<94>Ú<9a>µ@3^TDl<Ç<8d>à^@3q0tÓyN^C^XÃ¿ñ5^Lÿ^W<95>
6J<9e>^@y<9b><94>¹",Ð<89>ï/¹ðË¨<8d><8a>^Y^[ZßEE¥)Jî<93>uà×><87>vj-
Ð<8a>Í<86>[jï»Nþ^A^F^B@^E^@^@^O<9f>^@^D^@^@0®:Êâp^@@^@^A^@^@^B<96>^@^@^@
d^ETList^LStreamerInfo^RDoubly linked listZL

Data Tree made in ROOT as viewed
through the CINT interpreter

We Are Currently in a Land War with our Data:
We Desperately Need TREE Power!

Reasons to Use a Data Tree

DATA INPUT IS NOT CONSTRAINED BY FORMAT:

 The user inputs the leaves into the linked list and does not

edit the tree file directly, format is the job of the interpreter

program

 Examples: No 80 character limits, no repetition of nucleus

identifier, etc...

With an interpreted Tree it could be:
“Input T1/2 (value,error,units)”
245,40,FS;
195, 70, FS; ...
32S_tree->Fill

Reasons to Use a Data Tree

FORMAT DOES NOT CONSTRAIN THE DATA

 A data tree can always be expanded upon, branches and
leaves can always be added as needed

 Examples: Data currently in comments (A2,A4) can be
given their own branch, values can be quoted correctly in
full precision (ex: Q-value)

With an interpreted Tree it could be:
32S_tree->AddBranch(A2,double);

With an interpreted Tree it could be:
32S_tree->AddBranch(A2,double);

Reasons to Use a Data Tree

DATA IN A DATA TREE ARE COMPUTATIONALLY
ACCESSIBLE

 The elements of the tree can be accessed, added,
subtracted, averaged, modified in any computational way
with EASE

 Examples: No more scrolling - select the 32nd excited state
multi-polarity with few keystrokes. Q-value changes, adjust
all resonances trivially

With an interpreted Data Tree it could be:
32S_tree->GetMultipolarity(32S_tree->GetLevel(32));
32S_tree->SetQvalue(8853.64, KEV);
Or
32S_tree->SetQvalue(8853.64 + 2, KEV);

Interpreter Advantages

 The interpreter can be as complex or as simple as
desired

 Examples of possible useful properties:

 Could perform physics calculations instantly, warning
the user that his input doesn't make sense

 Could graphically display new input to the tree data
(tables, energy level diagrams) in real time

 Built in compiler for easy data manipulation

Schematic of Current Practice

Edit a (large) text file by hand
Input format by hand
Adjust data to fit format
Fiddle with format to adjust output
Make mistakes

Run a code to find
format mistakes

Run several codes to find physics mistakes

Run several codes to produce a
Printout in a fixed format

End user must parse a complicated
text file to extract data

Schematic of Suggested Future
Practice

Add Nuclear Data in a command
line or GUI to a Tree

Centralized Program
Reads, Writes and Interprets Data Tree
Warns evaluator in real time of
incorrect physics input
Graphically displays effect of input
In real time
Built in compiler for easy leaf data
Manipulation and end user output

Evaluate effect of data entry on
Physics, graphical output in real time

Produce an “Evaluated Data Tree”
And suggested graphical output

