Astrophysics Task Force

Michael Smith, Caroline Nesaraja ORNL Physics Division

Why have a USNDP Astrophysics Task Force ?

Numerous USNDP institutions are pursuing projects that are beneficial for studies in nuclear astrophysics

Other USNDP institutions have expertise that can greatly benefit astro-related projects

Better communication *can* bring these groups together, facilitate collaboration building, reduce duplication of efforts ...

This work does not fit solely in the Nuclear Reaction or Nuclear Structure Working Group – hence the need for the Astro Task Force

Astrophysics Task Force

USNDP Contributors to this report

- Argonne National Laboratory
- Los Alamos National Laboratory
- McMaster University
- Brookhaven National Laboratory
- Oak Ridge National Laboratory

National Nuclear Data Center

McMaster

Impiring Innovation and Discovery

University

BROOKHAVEN NATIONAL LABORATORY

Argonne National Laboratory -- Filip Kondev [with UNC]

Project: Studies of thermal equilibrium of ¹⁷⁶Lu via K-mixing PRC 80 (2009) 105806 Background: ¹⁷⁶Lu ground state has 37.6 Gyr lifetime, made by s-process only V $\Delta E=0.5 \text{ keV}$ potentially useful as chronometer of galactic s-process nucleosynthesis 724.7 (7) 725.2 (5) 6 563.9 (3) low-lying (123 keV), short-lifetime (3.6 hr) isomeric state $K_{1}^{\pi} = 6^{-1}$ 437.3 (6) complicates this IF thermal equilibrium between GS and isomer $\pi 5/2[402] + v7/2[514]$ 388.9 2<u>35.8</u> (4) detailed studies of capture reactions producing GS and isomer 184.1 122.9 (2) conflict with ratios of abundances in the region -- not enough GS $\int_{-\pi}^{\pi} = 0^{-\pi}$ (1) $\pi 7/2[404] + v7/2[514]$ $K^{\pi} = 7^{-}$ $\pi 7/2[404] + \nu 7/2[514]$ suggests a non-capture mechanism to produce the GS -10¹¹ intermediate state(s) that connect GS and isomer 10 Effective Half-Life (y) 839 keV, T_{1/2} = 35 ps investigate K mixing to enhance transitions 10 This study: Γ.... = 6.9 ps between GS & isomer 10³ **Results:** yes - enhanced transitions between K-bands 10¹ equilibrium so chronometer studies very challenging with ¹⁷⁶Lu¹⁰ Temperature (10⁹ K) PRC 80 (2009) 105806 0.2 0.25 0.3 0.35

situation potentially exists for other s- and r-process chronometers

Los Alamos National Laboratory -- Toshihiko Kawano et al.

Project: Coupled-channel calculation of reaction cross sections on excited nuclei

Background:

in astrophysical environments, thermal equilibrium can exist between nuclei in ground and excited states

nuclear reactions on excited states need to be determined – but hard to measure

This study:

use coupled channel (CC) approach to calculate direct reaction component [excited state to final GS or excited state] for n + ¹⁶⁹Tm

use statistical model to calculate compound reaction component, with transmission coefficients from CC

Results:

n capture cross sections on excited states can be up to 40 % higher than ground state capture at energies relevant for astrophysics [below 1 MeV]

n-induced fission, n scattering also changed

may suggest revisiting "Stellar Enhancement Factors" based on much older [non-coupled channels] approaches

FIG. 1. An example of coupled-channels calculation for the excited state. The target is at the first $(3/2)^+$ state, which is a member of ground-state rotational band. The coupled equations give a set of direct cross sections and the compound formation cross section. In this case the direct transition to the $(3/2)^+$ level is elastic scattering and to other levels is inelastic scattering.

FIG. 6. Ratios of the calculated capture cross sections of excited state to the ground state. The solid line is for the coupled-channels calculation, and the dashed line is for the spherical optical model case. The arrows on the x axis are the inelastic channel threshold energies.

Los Alamos National Laboratory -- Peter Möller

Project: Impact of spin-orbit parameters on nuclear mass models

Background:

mass models crucially important for astrophysics studies

spin-orbit & diffuseness parameters appear in nuclear mass models

spin-orbit parameters determined from spectroscopic studies

added automation in his codes has enabled quick calculation of mass tables with new parameter sets

This study:

compare mass models using new spin-orbit & diffuseness parameters with those from ~ 1970

Results:

new spin-orbit & diffuseness parameters give 0.596 MeV RMS deviation from AME2003, while old parameters 0.691 MeV RMS

model with new parameters MUCH better for N> 60

why interesting: new parameters chosen on basis of spectroscopy NOT on basis of mass values ... suggests internal consistency of model

a few additional improvements will be made before releasing a "new" mass model

Brookhaven National Laboratory -- Boris Pritychenko, Said Mughaghab, Alejandro Sonzogni

Project: Maxwellian-Averaged Cross Sections from ENDF/B-VII ADNDT in press

Background:

- ENDF (and other reaction libraries JENDL, JEFF ...) used by basic and applied nuclear science communities
- Bao & Kaeppeler collection of neutron-induced reaction rates used by nuclear astrophysics community (also KADONIS rate library)
- comparing reaction rates / maxwellian-averaged cross sections (MACS) from the two sources is valuable

This study:

generate MACS from ENDF, JENDL, JEFF and compare with Bao & Kaeppeler, with Mughaghab ...

information also posted on NNDC website

Results:

most cases have good agreement

cases with discrepancies are discussed in detail; no single point of failure of ENDF or other libraries

will lead to improvements in next ENDF release & in rates used for astro studies

Brookhaven National Laboratory -- Boris Pritychenko

National Nuclear Data Center

BROOKHAVEN NATIONAL LABORATORY

Project: Calculation of MACS from ROSFOND

Background:

ROSFOND is a Russian library of neutroninduced reactions optimized for reactors, combining information from ENDF, JENDL, JEFF, BROND ...

This study:

calculate MACS from ROSFOND

Results:

project completed

Follow up: coverage of n-induced reactions by ROSFOND and ENDF ROSFOND: 96% of isotopes in Bao et al. ENDF: ~ 80 % of isotopes in Bao et al.

NEW: combining ROSFOND and ENDF gives coverage of 98.3% of isotopes in Bao et al.

McMaster University -- K. Setoodehnia, Alan Chen, Jun Chen

Project: Measurement of ³²S(p,t)³⁰S to determine ²⁹P(p,γ)³⁰S rate in novae

Background:

nucleosynthesis of silicon isotopes in novae uncertain by a factor of 1000-10000 *(Iliadis et al. Ap. J. Sup. 134 2001)*

 $^{29}P(p,\gamma)^{30}S$ reaction rate crucial in Si isotope production

structure of ³⁰S above proton capture threshold uncertain, giving large rate uncertainty₁₅

This study:

use ³²S(p,t)³⁰S to study level structure of ³⁰S above (p,γ) threshold; measurement at Yale University

Results:

data under analysis level assessments to follow

TABLE IU-Confliandis et al. Ap. J. Sup. 134 2001)

					· · · ·			
E _x (keV) (1)	E_R^{cm} (keV) (2)	J_{π}^{π} (3)	C ² S (4)	l _R (5)	Γ_p (eV) (6)	Γ ₇ (eV) (7)	ω) (eV (8)	
${}^{29}P(p, \gamma):$								
(4733) ⁿ	333.0	(3_{1}^{+})	0.04°	2	9.1×10^{-5}	4.9×10^{-3}	1.5×10	
(4888) ⁿ	488.0	(2^+_3)	0.11°	2	2.2×10^{-2}	4.2×10^{-3}	4.4×10^{-10}	
5145 10	745.0	(3^+_2)	0.02 ^p	2	2.4×10^{-1}	8.2×10^{-3}	1.4×10	
5288 10	888.0	(3 ⁻ ₁)	0.36°	3	7.5×10^{-1}	9.4×10^{-3}	1.6 × 10 -	
6117 10	1717.0	(11)	0.28°	1	1.9×10^{4}	8.2×10^{-1}	6.1×10^{-1}	
6233 10	1833.0	(4_1^-)	0.35°	3	1.9×10^{2}	2.9×10^{-3}	6.5×10^{-3}	

Figure 1. Contributions to the reaction rate of ${}^{29}P(p, y){}^{30}S$. Also shown is the Hauser-Feshbach rate of ref. [3].

McMaster University -- Jun Chen, Alan Chen, K. Setoodehnia

Project: Measurement of p(²⁷Si,²⁶Si*)d to determine ²⁵Al(p,γ)²⁶Si rate in novae

Background:

nucleosynthesis of ²⁶Al in stellar explosions needed to explain maps of ²⁶Al in our Galaxy

reactions that produce and destroy ^{26}Al are uncertain – including $^{25}\text{Al}(p,\gamma)^{26}\text{Si}$

structure of ²⁶Si above proton capture threshold uncertain

This study:

Oak Ridge National Laboratory -- Michael Smith, Caroline Nesaraja

Project: Measurement of p(²⁶Al,²⁶Al)p & d(²⁶Al,²⁷Al)p to determine ²⁶Al(p,γ)²⁷Si rate

Background:

nucleosynthesis of ²⁶Al in stellar explosions needed to explain maps of ²⁶Al in our Galaxy

reactions that destroy ²⁶Al are uncertain – especially ²⁶Al(p,γ)²⁷Si

structure of ²⁷Si above proton capture threshold uncertain

This study:

use radioactive ²⁶Al beam at ORNL HRIBF to measure (p,p) and (d,p) in inverse kinematics

Results:

Oak Ridge National Laboratory -- Michael Smith, Eric Lingerfelt, Caroline Nesaraja

Project: software systems for nuclear astrophysics research

Background:

nuclear information not easy to access, visualize, share, process into astrophysical models

not easy to determine astrophysical impact of new nuclear physics information

This study:

continual improvements of our unique on-line software suites for research in nuclear astrophysics and nuclear science nucastrodata.org / Computational Infrastructure for Nuclear Astrophysics

Results:

researchers in 85 institutions in 22 countries use our online systems

details of recent improvements in ORNL Progress Report presentationo-

our nuclear mass software makes an excellent platform for future mass evaluation efforts

some of our workflow management software could be helpful to the **broader** nuclear data community

Task Force Activities

Early Years:

Submitted proposal to DOE for supplemental effort

Wrote survey of resources in nuclear data community relevant for nuclear astrophysics

Recent years:

Annual Summary of USNDP work relevant for astrophysics

This year:

Add a mid-year update of astro projectsPost summaries on USNDP web pageAdvertise projects on other online astro data services

Closing Comments

there are really interesting astro-related projects carried out by USNDP institutions

some of your projects could possibly be extended or enhanced to have astrophysical implications

we would like to explore such possibilities with you !