RIGEN Isotopic Depletion Capabilities – Overview and Status Update

Nuclear Physics Working Group Meeting Brookhaven National Laboratory 2009 November 6

Ian Gauld

Reactor Physics Group Nuclear Science and Technology Division

Content

Origins of ORIGEN

- Modeling and simulation capabilities
- Development history, status, versions
- SCALE current state-of-the-art ORIGEN capability and data
- Code/data requirements for physics applications
 - Nuclear data for isotopic transmutation
 - Neutron and gamma radiation source terms
- Validation database

ORIGEN – <u>O</u>ak <u>R</u>idge <u>I</u>sotope <u>Gen</u>eration and Decay Code

- Irradiation and decay, batch and continuous chemical processing
- ORIGEN is a coupled differential equation solver
 - Designed for difficult problems involving extremely diverse rate constants
- Code calculates:
 - Time dependent isotopic concentrations and radioactivity
 - Decay heat (based on summation)
 - Radiation sources (neutron/gamma)
 - Radiotoxicity
- Massive nuclear database for all nuclides produced by neutron transmutation, fission, and activation: 2227
 - 904 activation nuclides
 - 174 actinides
 - 1149 fission products
 - Complete data enable code to characterize irradiated fuel and components from seconds to millions of years after irradiation
- If you have been involved in fuel cycle or spent fuel analysis, you have probably used ORIGEN or seen it used
 - Thousands of licensed users: SCALE 5.1=1600, SCALE 6 (>500 in first 6 months)
 - Used worldwide; in every continent (except Antarctica)

DOE and NRC continue to support development of ORIGEN in SCALE

Use and Misuse of ORIGEN2

- Widespread cavalier use of ORIGEN2 reactor libraries beyond designed range of application with serious consequences in analysis results
 - Nuclear data was developed for plant operations and fuel types in 1980s
 - Cross section and decay data are obsolete
 - No high burnup capability
 - No high enrichment capability
 - Limited MOX capability, no advanced reactors, no research reactors
 - Dated neutron and gamma ray source capability
 - Limited published studies involving isotopic validation (data representation lacks the necessary fidelity for problem dependent application)
 - But... it is designed for standalone analysis and is easy to use
- Unless you have completely regenerated the nuclear data in ORIGEN2, you should not be using this code

Nuclear Data Needs for Fuel Cycle Applications

 Broad range of fuel cycle applications requires powerful and adaptable codes and state-of-the-art nuclear data

Data must adapt to the application physics

- Thermal and fast reactor fuel analysis
- High burnup fuel
- Material activation and nuclear forensics
- Nuclear safeguards and non-proliferation (passive NDA and active interrogation)
- Waste management

Application area data requirements

- Higher actinide transmutation (Am, Cm, Cf) required accurate modern cross sections
- Attribution and forensics Expanded number of reaction types for production of low concentration signatures
- Comprehensive gamma ray library (NDA)
- Accurate neutron source methods and data (inherent neutron source and sources used for neutron interrogation of SNM)

ORIGEN – Data for the Next Generation

- ORIGEN contains a massive collection of nuclear data
 - 2600 decay transitions
 - Approx. 16,000 neutron-induced reaction transitions (byproducts)
 - Approx. 34,000 fission production yield transitions
- Explicit simulation of all decay and reaction pathways
 - ORIGEN accurately represents of the evaluated nuclear data
 - No approximations
- In ORIGEN, all problem dependent data are calculated dynamically
 - 774 nuclide cross sections recalculated at each time point
 - Fission yields adjusted to the fission spectrum for each actinide
 - Neutron branching fractions recalculated
- Data developed from ENDF/B evaluations
 - Cross Sections (MF3, MF10)
 - Multiplicity branching fractions (MF3+MF9)
 - Direct fission yields (MF8, MT454)
 - Thermal (0.0253 eV)
 - Fast (500 keV) Pooled measurements from 500 keV to 2 MeV
 - High energy (14 MeV)

ORIGEN Nuclear Database

- ENDF/B-VII decay data
- Cross Sections from JEFF-3.1/A http://www.nea.fr/html/dbdata/JEFF/JEFF31/JEFF-3A.pdf
 - Special purpose activation cross section evaluations (< 20 MeV)
 - 774 target nuclei, 12,617 neutron-induced reactions
 - JEFF-3.1/A developed from continuous-energy EAF-2003 evaluations in standardized ENDF format
 - Processed to multigroup format (44-, 47-, 199-, 200-, and 238-groups)
 - Includes cross sections for > 20 different reaction types
 - Other ORIGEN and ORIGEN2 variants limited to (n,g), (n,p), (n,f), (n,α), (n,2n), (n,3n)
 - Reactions to isomer states handled as partial cross section method implicitly treats energy-dependent branching to excited states
 - All reaction byproduct generation included
- <u>Energy-dependent</u> ENDF/B-VII fission yields

Nuclear Decay Data

- Upgraded to ENDF/B-VII
 - β⁻, β⁺, EC, α, IT, β⁻β⁻, β⁻n, n, β⁻α
 - Transitions to ground and excited states

Nuclear Cross Section Data

• JEFF-3.1/A + ENDF/B-VII data

- $\begin{array}{l} \textbf{Reaction types supported (n,2n), (n,3n), (n,f), (n,n\alpha), (n,n3\alpha), (n,2n\alpha), (n,3n\alpha), (n,np), (n,n2\alpha), (n,2n2\alpha), (n,nd), (n,nt), (n,n^3He), (n,nd2\alpha), (n,nt2\alpha), (n,4n), (n,g), (n,p), (n,d), (n,t), (n,^3He), (n,\alpha), (n,2\alpha), (n,3\alpha), (n,2p), (n,p\alpha), (n,t2\alpha), (n,d2\alpha), (n,n') \end{array}$
- Transitions to ground and excited states + n,n' (MT51)
- General transition matrix formed for nuclide $A \rightarrow B$
- Solver methods allow cyclic feedback A ⇐ B

	n,4n	n,3n	n,2n		n,γ
		n,nt	n,t n,nd	n,d n,np	n,p
n,3nα	n,2nα	n,nα	n,α n,n³He	n,³He	n,2p
			n,pα		

Reaction Type	Number of reactions in JEFF-3.1/A library
(n,n')	262
(n,2n)	1010
(n,3n)	871
(n,f)	90
(n,n′α)	907
(n,2nα)	4
(n,3nα)	2
(n,n′p)	922
(n,n2α)	1
(n,n'd)	904
(n,n't)	791
(n,n'h)	208
(n,4n)	25
(n,2np)	7
(n,γ)	1007
(n,p)	1016
(n,d)	927
(n,t)	951
(n,h)	862
(n,α)	992
(n,2α)	2
(n,2p)	822
(n,pα)	34

Multiplicity (MF9) Branching leading to production of an isomeric state

- Energy dependence now calculated dynamically
 - ORIGEN uses energy-dependent cross sections to each product state
- Most codes assume isomeric branching is a constant value

• Example:
241
Am (n, γ) $\xrightarrow{\uparrow \gamma^2} ^{242m}$ Am (n, γ) $T_{1/2}$ = 114 y
 242 Am (n, γ) $T_{1/2}$ = 16 h

thermal $f\gamma$ values

ORIGEN-S*	16.2%
IAEA WIMS	12.0%
ORIGEN2	20.0%
ENDF/B-VII	10.0%
JEFF 3.1	9.0%

* Previous releases Recommended value based on detailed evaluation of destructive measurements 11%

Nuclear Physics Working Group Meeting

Fission Yields (MF8,MT454)

- Independent fission yields calculated using energy-dependent fission spectrum for each actinide
- 1149 fission products
- 30 fissionable actinides
- Fraction of fissions occurring in each energy region of tabulated ENDF/B-VII yields used to weight effective fission yield

13 Managed by UT-Battelle for the U.S. Department of Energy

Nuclear Physics Working Group Meeting

Photon Yield Library

- Library of gamma ray intensity and yield for all evaluated radioactive isotopes
 - 1132 gamma emitting nuclides (ENDF/B-VI, ENSDF, JEFF)
- Discrete gamma lines due to
 - $-\beta$ -, β +, α , IT, ϵ decay
- Discrete X-rays due to
 - $-\beta$ + annihilation radiation
 - Fluorescence following K-capture (ϵ) or emission of conversion electrons
- Continuum gamma spectra due to
 - Theoretical spectra based on nuclear structure calculations
- Continuum X-ray spectra due to
 - Internal Bremsstrahlung processes
- Earlier version (ORIGEN2) library developed in 1979 with 418 radionuclides
 - Missing many short-lived fission products
 - Missing many key activation and medical isotopes

Gamma Analysis Applications

Spent nuclear fuel non-destructive analysis

Spent Fuel Gamma Spectra (TMI-1)

Fuel examinations

²³⁵U Gamma Spectrum(1.7 s after fission)

Managed by UT-Battelle for the U.S. Department of Energy

Nuclear Physics Working Group Meeting

Spontaneous Fission Gamma Rays

- Work recently done with Georgia Tech on ²⁵²Cf source analysis
- Prompt-only gamma spectrum implemented
- Time dependent fission products simulated explicitly using ENDF/B-VII spontaneous fission yields
 - Delayed fission product gamma rays represent ~50% of the total emission rate

Neutron Source Methods

- Methods based on LANL SOURCES-4C code homogeneous option
 - Gauld, Shores, Perry http://www.ornl.gov/~webworks/cppr/y2001/pres/113058.pdf
 - Spontaneous fission: Watt fission spectrum parameters for 41 actinides
 - N(E) = C e^{-E/A} sinh (B E)^{1/2}
 - ν values and SF branching fractions
 - (α ,n) reaction neutrons
 - Stopping power method

$$=\frac{N_i}{N}\int_{0}^{E_{\alpha}}\frac{\sigma_i(E)}{S(E)}\,dE$$

• 89 α -emitting actinides and 7 α -emitting fission products

 Y_i

- 19 light target nuclides: ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ¹³C, ¹⁴N, ¹⁷O, ¹⁸O, ¹⁹F, ²¹Ne, ²²Ne, ²³Na, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁹Si, ³⁰Si, ³¹P, and ³⁷Cl
- Delayed neutron spectra for 105 fission products spectra in 10 keV bins starting at 50 keV as in ENDF/B

Inverse Problems and Adjoint Solutions

- ORNL has developed an Adjoint version of ORIGEN for inverse problems
- Automatic differentiation also applied successfully using GRESS (Gradient Enhanced Software System); OpenAD (Argonne)
 - I. C. Gauld and D. E. Mueller, "Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations," ORNL/TM-2005/48 (2005).
- INDEPTH Software for automated parameter search with least squares optimization
 - C. F. Weber and B. L. Broadhead, "<u>Inverse Depletion/Decay Analysis Using the SCALE</u> <u>Code System</u>," *Trans. Am. Nucl. Soc.*, 95, 248–249 (2006).
 - Nuclear Forensic applications Spent Nuclear Fuel

Reactor (Assembly)	Burnup (C	(GWd/MTU) Decay time (d)		ne (d)	Enrichment (%)	
	Actual	Predicted	Actual	Predicted	Actual	Predicted
Calvert Cliffs (BT03)	46.5	43.5	2447	2832	2.45	2.30
Gosgen (GU3)	52.4	53.0	NA	1332	4.10	4.27
Mihama-3 (87C03)	31.4	28.7	1825	1863	3.24	3.21
Trino (ESL7)	24.5	26.2	NA	584	3.13	3.35
Turkey Point (D04/RG10)	31.3	30.3	927	1273	2.56	2.52
Takahama (SF96-4)	28.9	29.5	0	15.6	2.63	2.90
Takahama (SF97-4)	47.0	46.8	0	1	4.11	4.16

Application V&V

- ORNL has a longstanding commitment to ORIGEN V&V
- ORNL has provided guidance to DOE and NRC on data acquisition and worked to acquire and evaluate data from U.S. and international programs
 - Isotopic benchmark measurements for more than 160 spent fuel samples, including
 - OECD/NEA SFCOMPO database http://www.nea.fr/sfcompo/
 - TMI-1 measurements
 - ARIANE, REBUS, and MALIBU high burnup International programs
 - High burnup Spanish PWR fuel measurements (75 GWd/t)
 - New modern BWR data being acquired for Sweden
- Decay heat measurements
 - More than 100 assemblies measured in Sweden circa 2006
 - Short cooling times < 5 hours after fission</p>
- Neutron and gamma ray delayed emission spectra

ORIGEN Spent Fuel Isotopic Validation Sets

Reactor (country)	Measurement facility	Experimental program	Assembly design	Enrichment (wt % ²³⁵ U)	No. of samples	Burnup (GWd/t)
TMI-1 (USA)	ANL (USA)	OCRWM YMP	15 × 15	4.013	11	44.8 – 55.7
TMI-1 (USA)	GE-VNC (USA)	OCRWM YMP	15 × 15	4.657	8	22.8 – 29.9
Calvert Cliffs (USA)	PNNL, KRI (USA, Russia)	OCRWM ATM	14 × 14	2.5/2.7 3.0	9	18.4 – 44.3
Takahama 3 (Japan)	JAEA (Japan)	JAEA	17 × 17	2.63 / 4.11	16	14.3 - 47.3
Obrigheim (Germany)	ITU/IAEA/WAC/IRCh (Germany)	JRC	14 × 14	3.8/3.13	28	15.6 – 38.1
Trino Vercellese (Italy)	Karlsruhe (Germany)	JRC	15 × 15	2.7 / 3.1 / 3.9	31	7.2 – 25.3
H.B. Robinson Unit 2 (USA)	PNNL (USA)	OCRWM ATM	15 × 15	2.56	4	16.0 – 31.6
Turkey Point (USA)	Battelle Columbus (USA)	NWTS	15 × 15	2.56	5	30.5 – 31.6
Gosgen (Switzerland)	SCK-CEN, ITU (Belgium, Germany)	ARIANE	15 × 15	4.1	3	29.1 / 52.5 / 59.7
GKN II (Germany)	SCK-CEN (Belgium)	REBUS	18 × 18	3.8	1	54.0
Vandellós II (Spain)	Studsvik Nuclear (Sweden)	CSN/ENUSA	17 × 17	4.498	7	42.9 - 73.8
Gösgen (Switzerland)	SCK-CEN (Belgium)	MALIBU	15 × 15	4.3	3	46.0 / 50.8 / 70.4

ORIGEN Decay Heat Validation Swedish spent fuel measurements

- High burnup fuel data
- Extended cooling times < 30 years
- Modern fuel assembly designs

SCALE Depletion Capabilities Standardized Computer Analysis for Licensing Evaluation

 TRITON depletion sequence performs 1-D, 2-D, or 3-D analysis

XSDRNPM – 1-D SN (SCALE 6.1)

NEWT – 2-D SN

- Couples transport code with depletion/decay code ORIGEN-S
- Rigorous treatment of the resonance self-shielding using the CENTRM/PMC methodology
 - problem-dependent pointwise energy flux (50,000-70,000 energy points) from 1-D transport calculation with CENTRM for system components
 - CENTRM flux solution used by PMC to collapse the pointwise cross section data to obtain problem-dependent multigroup cross sections (238-group) for transport calculations

Distributed Reactor and Assembly Libraries

Reactor Type*	Assembly Design Description		VVER-440 1.6%, 2.4%, 3.6%		
	Combustion Engineering 14x14		VVER-440 3.82%		
	Combustion Engineering 16x16	VVER LEU	VVER-440 4.25%		
	Westinghouse 14x14		VVER-440 4.38%		
PWR LEU* 1.5 – 6.0 wt%	Siemens 14x14		VVER-1000		
72 GWd/t	Westinghouse 15x15	CANDU	CANDU 37 element natural uranium		
	Westinghouse 17x17	CANDO	CANDU 28 element natural uranium		
		MAGNOX	Natural uranium		
	westinghouse 17x17 OFA	AGR	LEU		
	GE 7x7	RBMK	1.8 – 2.2 wt%		
	GE 8x8		14x14		
	ABB 8x8		15x15		
	GE 9x9	PWR MOX	16x16		
BWR LEU* 1.5 – 6.0 wt%	GE 10x10		17x17		
72 GWd/t			18x18		
			8x8-2		
	ATRIUM-10 10x10		9x9-1		
	SVEA-64 8x8	BWR MOX	9x9 ATRIUM-9		
	SVEA-100 10x10		10x10 ATRIUM-10		

Visualization Tools

Graphical User Input Interface MOX input form

OK Apply Reset Close UO2								
Title MOX Fuel				m	~			
Fuel Type	ox17x17	T		ALL				
Heavy Metal (a) 45	57271	(Pu + 11)			6	Ext		
neavy metal (y)		(Fu+0)				- Compil	ALC: NO.	
% Pu in Heavy Metal 7.	18	(100*Pu/(Pu + U))					
UO2 Enrichment (Wt%U235)	262	(1.5 to 5)		Hete	rence L) ate t	57 972003	_
	1000	(0.b- 00000)		Lo	bading [Date 6	6/ 9/2003	•
Burnup (MWa/MTO)	+000	(U to 60000)				,		
Cycles 3				Hea	avy Met	al Distrib	ution	
Libraries 1	•	Per Cucle			Wt %	C	Grams	
					lame	Isotope	Total	
Cooling Time 5		Years	.	F	'u	238	1.49	
						239	60.53	
Moderator Density (g/cc)						240	25.36	
						241	7.28	
Power History						242	5.34	
				- L	J	234		
						235	0.262	
	90% Ho					236		
	30% OP					238	99.738	
Average Power	32.4	MW/MTU		A	m	241	2.3	
i i i i i i i i i i i i i i i i i i i								

Java tools for data visualization

Neutron source spectra (PuO2)

Summary

- ORIGEN is a state-of-the-art burnup and decay analysis code
- Extensively validated and maintained under QA plan
- Next ORIGEN release will contain expanded data/capability
- Monteburns depletion recently upgraded in collaboration with LANL
 - Enhanced capability to use externally supplied cross sections
- Modular ORIGEN package release needed (separate from SCALE)
- Consolidation of development effort needed to support the active up-to-date version of ORIGEN
 - Avoid duplication of effort and parallel development
 - Collaborate on data improvements and new methods development
 - Leverage validation efforts of different organizations
 - Existing experimental database of isotopic data largely underutilized resource for validating nuclear cross section and decay data for fuel cycle R&D (Am, Cm, Cf)
 - ORNL has access to high quality data from International programs

Questions?

