Overview of LLNL experimental program

Ching-Yen Wu Lawrence Livermore National Laboratory

Nov 5, 2008

S&T Principal Directorate – Physical Sciences / N Division This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

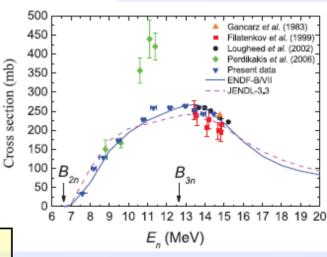
CSEWG 2008 at BNL

Outline

- 1. Tailored to the need of Stockpile Stewardship Program, relevant to GNEP
- 2. Highlights of FY08
- 3. Current and planned activities
- 4. New capabilities under development
 - Time Projection Chamber
 - ALEXIS
- 5. Summary

²⁴¹Am(n,2n) cross section

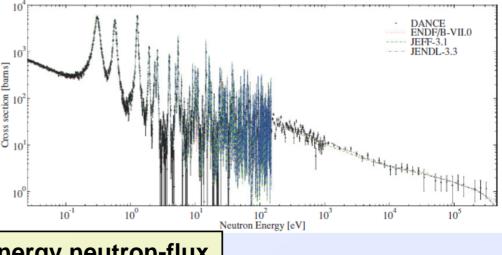
PHYSICAL REVIEW C 77, 054610 (2008)


Measurement of the ²⁴¹Am(n, 2n) reaction cross section from 7.6 MeV to 14.5 MeV

 A. P. Tonchev,¹ C. T. Angell,² M. Boswell,² A. S. Crowell,¹ B. Fallin,¹ S. Hammond,² C. R. Howell,¹ A. Hutcheson,¹ H. J. Karwowski,² J. H. Kelley,³ R. S. Pedroni,⁴ and W. Tornow¹ ¹Duke University and TUNL, Durham, NC 27708, USA
²University of North Carolina at Chapel Hill and TUNL, Chapel Hill, North Carolina 27599, USA ³North Carolina State University and TUNL, Raleigh, North Carolina 27695, USA ⁴North Carolina A&T State University and TUNL, Greensboro, North Carolina 27411, USA

> J. A. Becker, D. Dashdorj, J. Kenneally, R. A. Macri, M. A. Stoyer, and C. Y. Wu Lawrence Livermore National Laboratory, Livermore, California 94550, USA

E. Bond, M. B. Chadwick, J. Fitzpatrick, T. Kawano, R. S. Rundberg, A. Slemmons, D. J. Vieira, and J. B. Wilhelmy Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA (Received 5 March 2008; published 27 May 2008)


²⁴¹Am(n,γ) cross section

PHYSICAL REVIEW C 78, 034609 (2008)

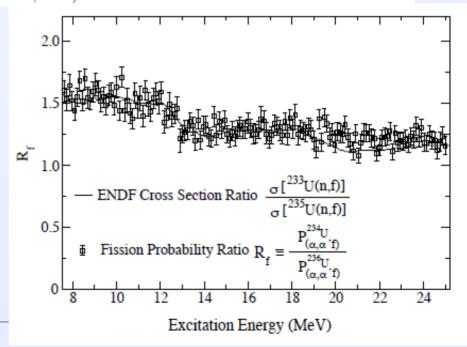
Neutron capture cross section of ²⁴¹Am

M. Jandel,^{1,*} T. A. Bredeweg,¹ E. M. Bond,¹ M. B. Chadwick,¹ R. R. Clement,¹ A. Couture,¹ J. M. O'Donnell,¹ R. C. Haight,¹ T. Kawano,¹ R. Reifarth,^{1,†} R. S. Rundberg,¹ J. L. Ullmann,¹ D. J. Vieira,¹ J. B. Wilhelmy,¹ J. M. Wouters,¹ U. Agvaanluvsan,² W. E. Parker,² C. Y. Wu,² and J. A. Becker²
¹Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
²Lawrence Livermore National Laboratory, Livermore, California 94550, USA (Received 27 May 2008; published 24 September 2008)

The neutron capture cross section of ²⁴¹Am for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (1 The thermal neutron capture cross section was determined to other recent measurements. Resonance parameters for $E_n \prec$ measured cross section. The results are compared with values and JEFF-3.1 evaluations. Γ_n neutron widths for the first three $\sup_{g \in I_n} \log_{g \in I_n} \log_{g$

For monitoring the low-energy neutron-flux

S&T Principal Directorate – Physical Sciences / N Division


Benchmark of the surrogate ratio method for (n,f) reaction

The Surrogate Ratio Method in the Actinide Region Using the $(\alpha, \alpha' f)$ Reaction

S.R. Lesher,^{1, 2, *} J.T. Burke,¹ L.A. Bernstein,¹ H. Ai,³ C.W. Beausang,² D.L. Bleuel,^{1, 4} R.M. Clark,⁴ F.S. Dietrich,¹ J.E. Escher,¹ P. Fallon,⁴ J. Gibelin,⁴ B.L. Goldblum,^{1, 5} I.Y. Lee,⁴ A.O. Macchiavelli,⁴ M.A. McMahan,⁴

K.J. Moody,¹ E.B. Norman,^{1,5} L. Phair,⁴ E. Rodriguez-Vieitez,⁴ N.D. Scielzo,¹ and M. Wiedeking^{1,4}

 ¹Lawrence Livermore National Laboratory, Livermore, California 94551
²Department of Physics, University of Richmond, Richmond, Virginia 23173
³Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520
⁴Lawrence Berkeley National Laboratory, Berkeley, California 94720
⁵Department of Nuclear Engineering, University of California, Berkeley, California 94720 (Dated: August 28, 2008)

- Submitted to PRC
- Good agreement achieved with the direct measurements

S&T Principal Directorate – Physical Sciences / N Division

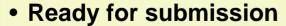
Benchmark of the surrogate ratio method for (n,γ) reaction

Benchmarking the Internal Surrogate Ratio Method: 21 MeV $^{235}U(d,p)$ by p- γ and p-f

J.M. Allmond,^{1,*} C.W. Beausang,¹ L.A. Bernstein,² L. Phair,³ D.L. Bleuel,² J.T. Burke,² S.R. Lesher,²

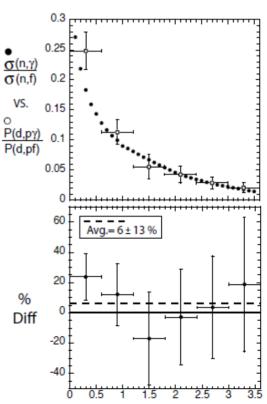
N.D. Scielzo,² M. Wiedeking,² B.F. Lyles,⁴ R. Hatarik,⁵ H.B. Jeppesen,³ and M.A. McMahan³

¹Department of Physics, University of Richmond, VA 23173


²Lawrence Livermore National Laboratory, Livermore, CA 94551

³Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

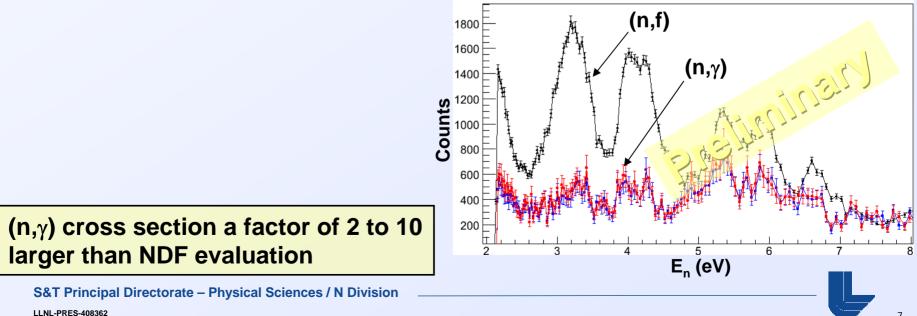
⁴Department of Nuclear Engineering, University of California Berkeley, Berkeley, CA 94720


⁵Rutgers University, Department of Physics and Astronomy, Piscatau

(Dated: October 17, 2008)

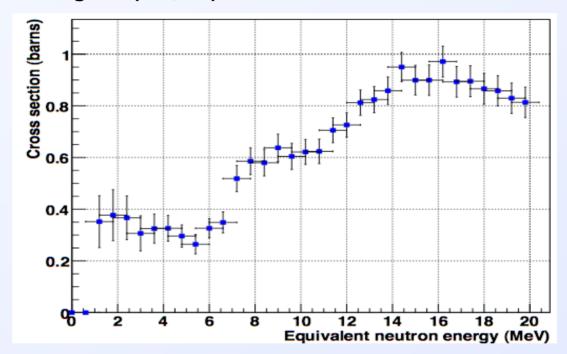
 Reasonable agreement achieved with the direct measurements

S&T Principal Directorate – Physical Sciences / N Division



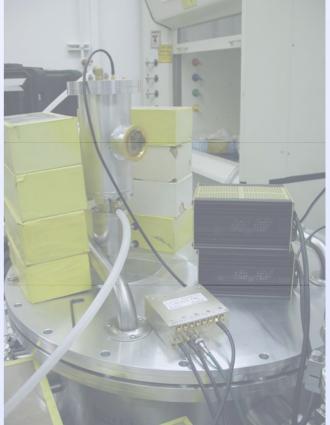
En(MeV)

^{242m}Am(n,f)(n,γ) cross sections


- 1. Two measurements were fielded at LANL using the DANCE array in FY07 and FY08 with ~98% enriched ^{242m}Am sample
- 2. Targets were fabricated at LLNL using both 0.5 mil Be and 2 μm Ti foils
- 3. (n,f) cross section for E_n up to ~100 keV was determined in the first measurement (~47 µg total mass on Be foil)
- 4. (n, γ) cross section for E_n between 2 and 9 eV was measurement in the second measurement (~154 µg total mass on Ti foil). (M. Jandel of LANL)

Current activities for the surrogate work

1. ²³⁹U(n,f) cross section using ²³⁸U(¹⁸O,¹⁶O)²⁴⁰U*


- 2. ²³⁹U(n,2n) cross section using ²³⁸U(¹⁸O,¹⁶O)²⁴⁰U*
- 3. ^{153,155,157}Gd(n,γ) cross section using ^{154,156,158}Gd(p,p')
 - s-process nucleosynthesis

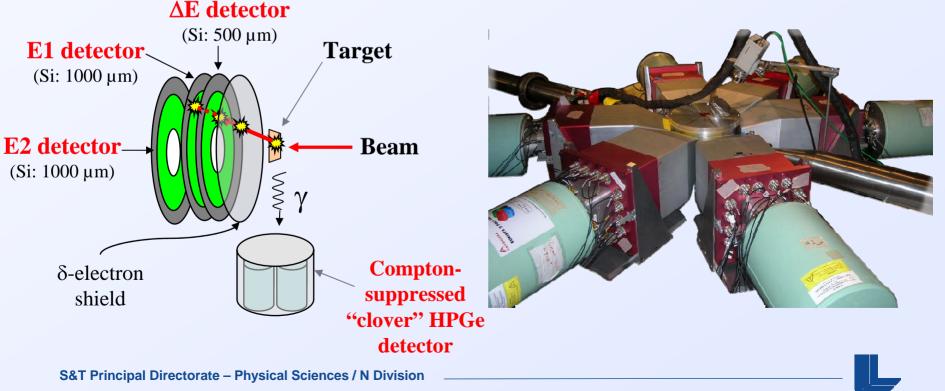
²³⁹Pu(n,2n) cross section

- 1. Deduced from the reaction modeling of measured (n,2n γ) cross section
- 2. Cross section for E_n from threshold to <20 MeV deduced from the 6⁺ \rightarrow 4⁺ transition of ²³⁸Pu in an earlier work (PRC 65, 02160(R), 2002)
- 3. Deduce the cross section from the $4^+ \rightarrow 2^+$ transition to minimize the uncertainty introduced by modeling
- 4. Enhance the sensitivity by excluding the γ rays of fission fragments using a fission counter
- 5. Experiments scheduled at TUNL in FY08 and FY09

Improve the accuracy of 239 Pu(n,2n) cross section by a factor of two for E_n near the threshold

Fission initiative

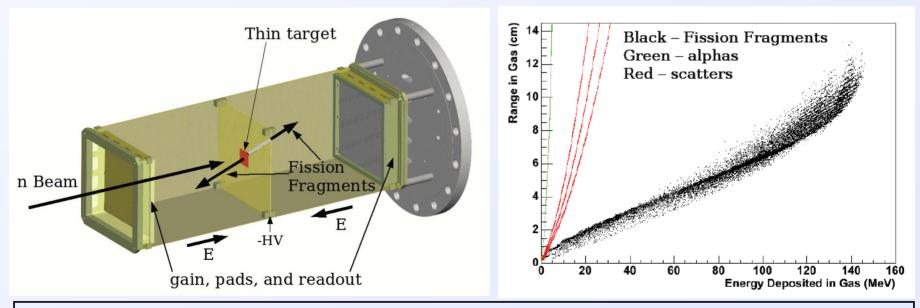
- 1. Improve the fission cross section to 1% accuracy
 - Develop the Time Projection Chamber
- 2. Improve the fission-neutron spectrum for E_n below 1 MeV and above 8 MeV
 - Neutron detectors
 - A large detector array with a solid-angle coverage ~10%
 - ⁶Li doped plastic scintillator or alternatives for the detection of neutrons with energy between 0.1 and 1 MeV
 - A new fission trigger detector with a sub-nanosecond time resolution


FIGARO array for the fission-neutron spectrum measurement (R. Haight of LANL)

Planned activities for the surrogate work

- 1. Precision study of (d,p) reaction on ²³⁹Pu
 - Provide the data needed for modeling the fission cross section on the first excited state in ²³⁹Pu
- 2. Review article on the surrogate work

LLNL-PRES-408362

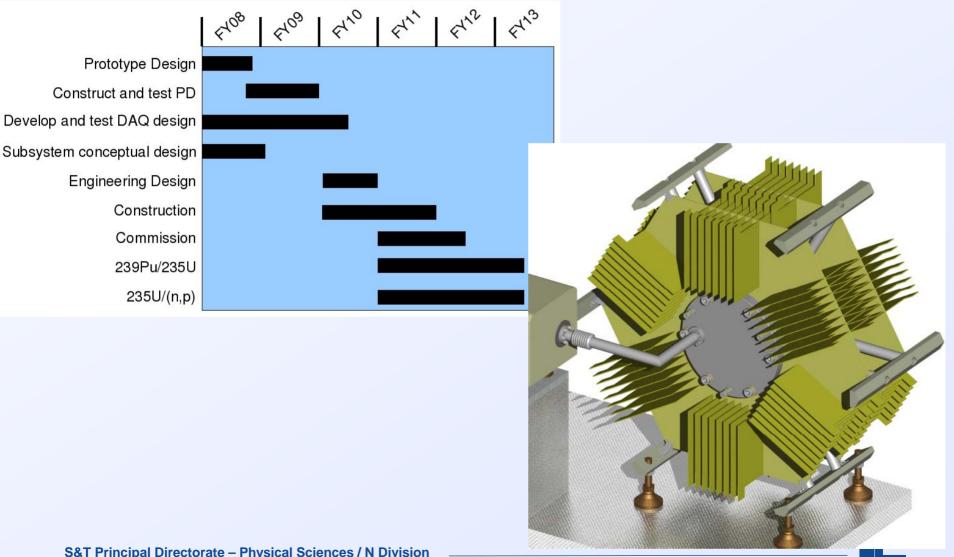


Fission cross section measurement using TPC

Improve the precision of measured ²³⁹Pu(n,f) cross section to ~1%

Capability:

- 1. Trajectory reconstruction
- 2. High background-event rejection
- 3. Charged-particle identification
- 4. Standalone or in conjunction with other detectors



LLNL/LANL/INL/Georgia Inst Tech/Ohio U/Oregon St U/Cal Poly St U/Col Sch Mines/Abilene Chris U

12

TPC: update

ALEXIS: an intense, tunable neutron source at LLNL

Pelletron accelerates *light ions* (p, d, He) which impinge on various isotopic targets to produce neutron beams with specified intensities and energy spectrum

Neutron Production:

Production Reaction	Neutron Energy Range (MeV)	Neutron Energy Spread (FWHM)	Total Neutron Yield (n/s)	Neutron Flux at 10 cm from target (n/cm²/s)	Notes
⁷ Li(p,n) ⁷ Be	0.01-0.4	~30 keV	10 ⁹	10 ⁷	4
t(p,n) ^s He	0.5-5.0	~400 keV	>10 ⁹	>10 ⁷	1,2
d(d,n) ³ He	5.0-9.0	~400 keV	>10 ¹⁰	>10 ⁸	3
t(d,n)⁴He	13.0-15.0	~100 keV	10 ¹⁰	10 ⁷	1,2


- 1. 5 mg/cm² titanium assumed for tritium target.
- 2. Same tritium target can be use for both (p,n) and (d,n) reactions.
- 3. ~0.5 MeV is assumed energy loss in deuteron target.
- 4. ⁷Li(p,n) produces roughly 30 keV thermal spectra with beam energy of 1.918 MeV.

ALEXIS: update

- 1. All the beam optical and diagnostic components were installed
- 2. The accelerator tank is under the care of NEC Corp
- 3. Procurement and final installation has been delayed

Summary

- 1. Provide the cross section essential to the Stockpile Stewardship Program
- 2. Relevant to GNEP
- 3. Team with the university personnel funded under NNSA/SSAA, LANL, and LBNL in both experimental and theoretical efforts
- 4. TPC on schedule and ready by FY11
- 5. ALEXIS delayed
- 6. Continue to develop new direction and capability as needed

Acknowledgement

- 1. LLNL U. Agvaanluvsan, L. Ahle, J.A. Becker, L. Bernstein, J. Burke, S. Lesher, R. Macri, K. Moody, E.B. Norman, W. Parker, N. Scielzo, M.A. Stoyer, P. Wilk, and C.Y. Wu
- 2. LANL T.A. Bredeweg, R.R.C. Clement, A.J. Couture, J.M. O'Donnell, M.M. Fowler, R.C. Haight, M. Jandel, R. Reifarth, R.S. Rundberg, J.L. Ullmann, D.J. Vieira, J.B. Wilhelmy, and J.M. Wouters
- 3. LBNL M.S. Basunia, R.M. Clark, M.A. Delaplanque-Stephens, P.Fallon, J.D. Gibelin, I.Y. Lee, B. F. Lyles, A.O. Macchiavelli, M.A. McMahan, L.W. Phair, E. Rodriguez-Vieitez, F.S. Stephens, and M. Wiedeking
- 4. TUNL C. T. Angell, D. Dashdorj, B. Fallin, C.R. Howell, H.J. Karwowski, J.H. Kelley, A. Tonchev and W. Tornow
- 5. U. Richmond C.W. Beausang
- 6. TPC M. Heffner (LLNL)
- 7. ALEXIS L. Ahle (LLNL)

