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Quantifying the relation between physics uncertainties and system
performance can benefit applications and guide science investment

Flow of physics processes: input experimental data with measurement uncertainties and/or model
input with physics uncertainties used to simulate the system in question --> output of model reveals
information about the performance of the system and its related uncertainties

Quantitative information on system performance gives a two-fold result: some level of confidence in
the system design and and indication of areas where improvement needed

Allows prioritization of uncertainties --
Where do you put your money to make science investments that will actually reduce the uncertainties?

physics data ——> SIS —> performance
+ 0(physics data) simulation + O(performance)

prioritized physics uncertaintie
(variance decomposition)

science <—
investments

d(performance)

design confidence
and margin

uncertaint hysics). x
y(phy )i d(physics),

These methods have seen some use in nuclear applications. (The JASON’s recommended
against it for weapons: the model should be the focus).
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Specifying probabilities for nuclear data is hard because of poorly
understood model inputs and complicated external data

How do we quantify the probability for a given set of input data to give the right output?
(Probability for a certain outcome should be proportional to probability of the inputs being correct.)
Improvement of the model should be the focus of this exercise...

~ fixed model

inputs: A-priori we have little understanding of the
level densities, probability distributions for the inputs
strength functions, aside from experiments and model
fission barriers,
= mass tables .. Microscopic model :
\ reaction code Outputs
Monte-Carlo or
deterministic

Models don’t explicitly relate output
dependence on microscopic external data
to that on integral experiments, e.g.
relation between cross section and k.

external data:

spectra, multiplicities,
kinetic energies, v(A)...
variable model inputs: parameters tuned to data

Microscopic (directly comparable to data) Integral experiments (indirect)
* cross section measurements * k¢ eigenvalues

- spectral measurements * pulsed sphere outputs

- multiplicity distributions, correlations... *
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The same statistical assumption used for system assessment can be used for

quantifying the probability for a nuclear data set to be correct
-

The probability for a given set of inputs to produce a correct output can be factorized in three
components

P(data = correct) o< P(output|input)
= P(modelinputs) x P(microscopic)
x P(integral)
For many problems where experimental data are available the probability for a set of
parameters is not important since it can be understood from the data to begin with

We can calculate the uncertainties (covariances) and correlations in inputs/outputs in a fairly
simple way using moments of an input or an output observable

(O™(E)) = ) P.O}E) O=7..
(OME,E')) = ) ) PPO}(E,E) O=C,R..
n =1, 2 for averages, variances b

C is covariance matrix, I=j diagonal elements, l.ne.j off-diagonal
R is correlation matrix, | = j = 1, R>0 correlation, R<0 anticorrelation
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We applied this method to our fission neutron spectrum evaluation
-

= FREYA (Fission Reaction Event Yield Algorithm) studies fission
event-by-event (see my fission talk for details)
e Samples spectra for different physics input parameters
e Up to 4 microscopic model parameters used in evaluation for incident
energy less than 3.5 MeV

— d, tip separation distance in Coulomb approximation to total kinetic energy
of fragments

— a;, asymptotic level density parameter, ‘temperature’ of excited fragment
— X, relative balance between excitation of light and heavy fragments

— &4, parameter to introduce fragment mass dependence to distance
between fragments

e Calculate spectra and multiplicity for each parameter set (1-4)
sampled

* Generate probabilities from known data where the »? includes that of
the fission spectrum and average multiplicities

Lawrence Livermore National Laboratory UL-




Parameter values obtained from spectral fits

E, (MeV) d (fm) v E, (MeV) d (fm) ar, (MeV~1) v
0.5 4.063 £0.026 2.943 0.5 4.060 = 0.028 6.651 £0.093 2.958
1.5 4.131£0.013 3.091 1.5 4.155 £0.021 8.179 £0.582 3.087
2.5 4.170 £0.017  3.246 2.5 4.202 +£0.022 8.214 +£0.482 3.239
3.5 4.197+0.014 3.374 3.9 4.236 £ 0.024 8.441 £0.625 3.375
Parameter values obtained from spectral _ £ (MeV) d (fm) z v
fits to data using 1-4 parameters 0.5 4.102 £0.047 0.863 =0.069 2.936
Most convenient to extrapolate to other L5 4.101£0.036  1.115+0.112  3.090
energies with fewest parameters needed 2.5 4.141£0.045 1.103+0.123  3.242
3.5 4.154 +£0.041 1.140 £0.115 3.373
E, (MeV) d (fm) x €4 v
0.5 4.055 +0.061 0.917£0.087 0.0125£0.0230 2.940
1.5 4.092 £0.093 1.136 £0.107 0.0014 +=0.0288 3.087
2.5 4.119+0.094 1.103£0.115 0.0077 +0.0291 3.242
3.5 4.149 £0.082 1.135+£0.101 0.0014 £0.0270 3.371
E, (MeV) d (fm) ar, (MeV~1) x €d v
0.5 4.107 £0.056 7.328 £0.351 0.960 £ 0.105 —0.0149 +0.0189 2.942
1.5 4.145+0.084 8.011 £0.557 0.992+0.145 0.0059 £0.0256  3.090
2.5 4.157 £ 0.087 7.962+£0.728 1.015+0.134 0.0104 £0.0272  3.236
3.9 4.199 £0.055 8.305£0.706 1.059+0.137 0.0058 £0.0205  3.373

Lawrence Livermore National Laboratory

L



A simple example with the fission spectrum
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Density plots of spectral covariances for
different parameter sets
Incident neutrons at 0.5 MeV

Parameters: dis separation distance, > 2
a, is level density parameter, § 2
X is balance between excitation & 10 ?
energies of light and heavy fragments § 5
and ¢, is the A-dependent change in d) g g
3 3
. . . . Z 5 z
Lighter areas imply higher covariance
Other energies look about the same 0 _ _ ;
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Correlations in the Model Inputs
-

= Up to 4 parameters in fission spectra calculation gives a 4x4 matrix of correlations:

Ria  Ria, Ric  Rae, Rij = & C, is covariance matrix element
R, Ld R, Lar R, LT R, I €4 9i0; o,/is uncertainty on one parameter
R, 4 R.a, R, . R, ?Bllyé Sofg-edki)zﬁogal te1rms shown in
Red d Red ar Red T Red €d 2 i T
Correlation for 2 parameter fits to (d, a,) and (a, x) Correlation for 3 parameter fits to d, x and ¢,

E, MeV) Rg,, E,MeV) Ry, E,(MeV) Ry, Rge, Rz,
0.5 -0.360 0.5 -0.767 0.5 -0.298 -0.788 -0.280
1.5 0.704 1.5 -0.913 1.5 -0.351 -0.921 -0.007
2.5 0.619 2.9 -0.927 2.9 -0.395 -0.903 0.064
3.9 0.766 3.5 -0.905 3.9 -0.201 -0.893 0.202

E, (MeV) Ry ar Ry RaL z Rg €d RaL €d Ly €d Correlation for
0.5 0.674 -0.562 -0.653 -0.498 -0.156 -0.379 4 parameterfits
1.5 0.351 -0.406 -0.491 -0.733 0.126 -0.268
2.9 0.313 -0.361 -0.426 -0.726 0.166 -0.321
3.9 0.482 -0.390 -0.390 -0.496 0.224 -0.492
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Correlations in the fission spectra
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The factorizability of the probability gives a great

freedom in accounting for integral experiments
-

= Integral experiments imply

complicated indirect * Wehave
constraints on data P = P(modelinputs) x P(microscopic)
« e.g. k relates o(n,f), spectra, x P(integral)
o(n,y), o(n,n’).... for all isotopes = P x P(integral)
In an assembly - P typically simple correlations
= Tedious to directly account for - P(integral) generally complicated
all possible constraints « for example, Gaussian P(integral)
. . . T
chan_ges every tlm_e consider a P(integral) — Iy exp {_ |k k2ef.f| ]
new integral experiment or 2072
configuration = Define and store P
 covariance files are not = Account for integral experiments at run
intrinsically interesting outside time: _
applications - sample from P
= because P factorizes we have e calculate interesting integral quantities

and P(integral)
= Convenient because you can always

add more integral experiments and no
information lost in defining correlations
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This leads us to the ‘weak criticality conjecture’
-
= A conjecture:

* For near-critical systems constrained by integral experiments, the
details of P are not important - it suffices to specify approximate
uncertainties and a covariance correlation length

= Why?
e P(integral) provides constraints that are about an order of
magnitude stronger than P:

* For example, we know k_ for Jezebel to 0.2% while the cross
sections are only known to 1-2% or less. For a Jezebel-like system,
the uncertainty cannot be further reduced until the cross sections
are known to the same precision as K

= Why is it useful?
* It means it is not necessary to specify the actinide covariances in
detail for criticality applications
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Summary
-

= At LLNL, we are developing formal uncertainty
quantification tools:

e Library of evaluated uncertainties, on the fly data
processing, dynamic checking for integral systems

* Used in programmatic applications for several years
now

= A fairly simple formalism gives uncertainties in neutron
spectra

 Depending on parameters, mean neutron spectra and
multiplicity is unchanged but correlations are

= Factorization of probability gives great freedom
e consider storing only P

— integral constraints can be accounted for at run time

— simulations of integral constraints are almost always
cheap compared to full system simulations
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