Covariance Work at LANL

P.Talou, T.Kawano, G.Hale, P.G.Young, D.G.Madland, A.C.Kahler, M.B.Chadwick, R.C.Little

Los Alamos National Laboratory

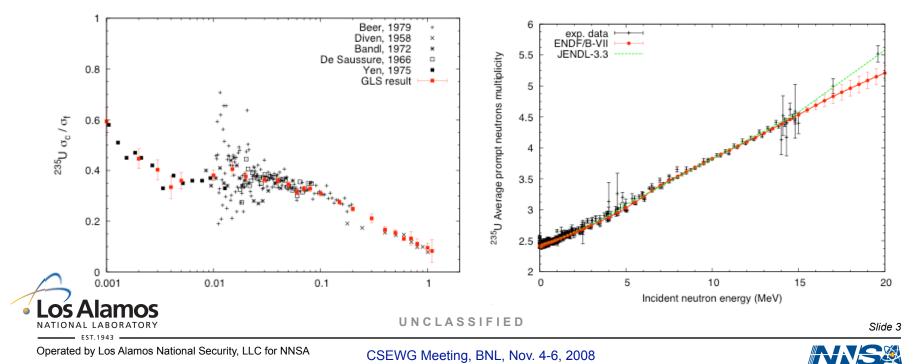
Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Uncertainty Quantification (UQ) Methodologies

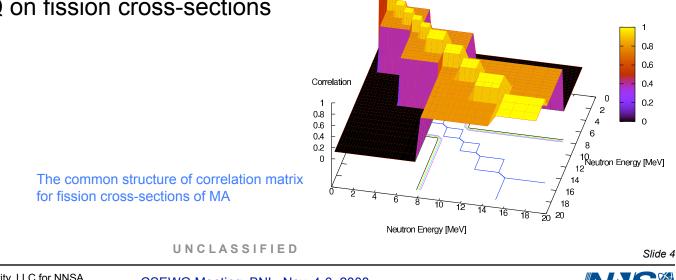
- "High-fidelity" UQ for Major Actinides
 - ^{233,235,238}U and ²³⁹Pu (LANL/ORNL)
- "Low-fidelity" UQ for Minor Actinides
 - From ²²⁵Ac to ²⁵⁵Fm
- Very precise ("High-fidelity"?) R-Matrix analysis for some light elements
 - ¹H, ⁶Li, ¹⁰B
- "Low-fidelity" UQ for other light elements
 - From ¹H to ¹⁹F (except for ⁷Li)
- UQ for prompt fission neutrons spectrum
 - First calculations for ²³⁵U+n(0.5 MeV)

Operated by Los Alamos National Security, LLC for NNSA


UNCLASSIFIED

"High-Fidelity" UQ for Major Actinides: ^{235,238}U and ²³⁹Pu

P.Talou, T.Kawano and P.G.Young, ND2007 Proceedings, p.293

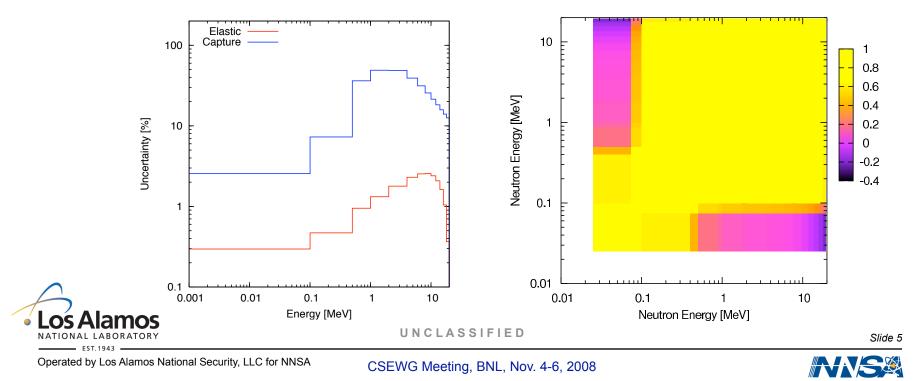

- Closely follows the ENDF/B-VII.0 evaluation procedure
- Uses both model parameters and experimental data uncertainties
- Codes: GNASH, CoH, KALMAN, GLUCS, SOK
- ²³⁵U fission cross-section covariance from IAEA Standards Evaluation

"Low-Fidelity" for Minor Actinides (DOE Criticality-Safety Program)

T.Kawano, "Covariance Workshop", Port Jefferson, June 2008

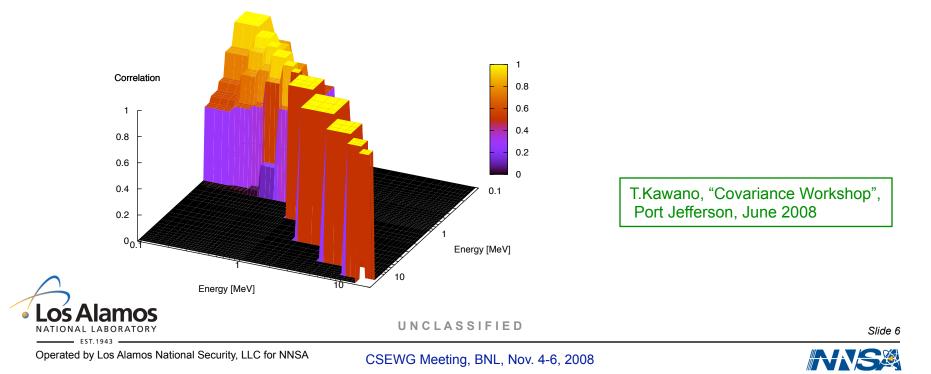
- Minor Actinides from ²²⁵Ac to ²⁵⁵Fm
- KALMAN calculations using CoH and GNASH reaction codes
- Default global optical model potential Koning-Delaroche
- Sensitivity to the model parameters
- Simplified UQ on fission cross-sections

Operated by Los Alamos National Security, LLC for NNSA


CSEWG Meeting, BNL, Nov. 4-6, 2008

R-Matrix Analysis of Light Elements

G.Hale, "Covariance Workshop", Port Jefferson, June 2008

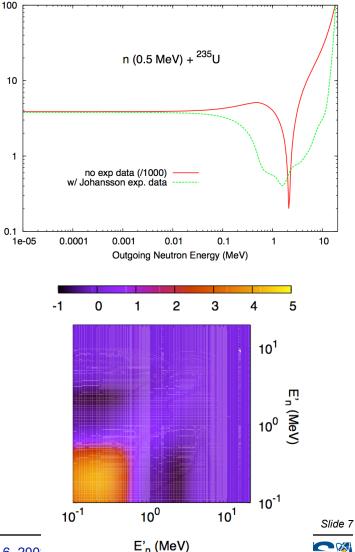

- Very precise analysis with EDA code
 - Elastic and capture on ¹H evaluated in the entire energy range
 - Standards evaluation: small uncertainties and strong correlation
 - Ideal case for covariance evaluation

"Low-Fidelity" UQ for other Light Elements

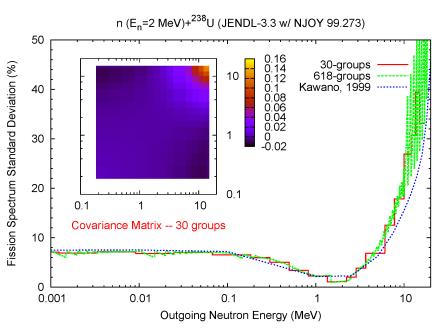
Different evaluation procedures depending on the elements

- R-matrix, least-squares fitting, simple interpolation, guess, ...
- Resonance parameter covariance matrices not available
- Many "derived" cross-sections: $(n,\alpha)=(n,\alpha_0)+(n,\alpha_1)+...$
- LANL covariance data for elements ¹H to ¹⁹F

UQ for Prompt Fission Neutrons Spectrum PFNS



- Los Alamos model for PFNS calculations
- Combines model sensitivity calculations with experimental data with the KALMAN code
- First test case: n(0.5 MeV)+²³⁵U

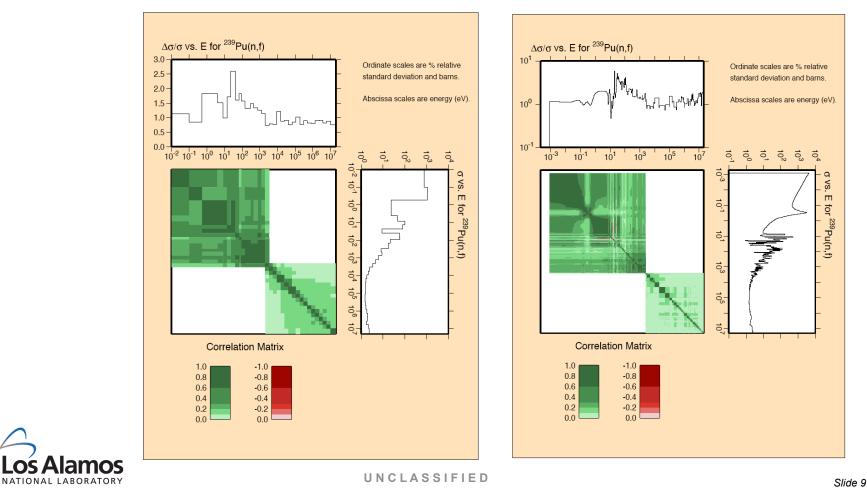

Fission Spectrum Uncertainty (%)

NJOY Processing Code Upgrades

New NJOY version 99.275

- Includes version ERRORJ v.2.3
- Successful runs of test cases from Go Chiba (JAEA)
- Additional testing:
 - Prompt fission neutrons spectra (MF35)
 - Very fine energy-group structure (618 energy groups)
- Successful processing of latest ORNL/LANL covariance files for ENDF/B-VII.1

A.C.Kahler, "Covariance Workshop", Port Jefferson, June 2008



Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

NJOY 99.275 Processing of ^{233,235,238}U and ²³⁹Pu files

Example: ²³⁹Pu in 33 and 618 groups

Operated by Los Alamos National Security, LLC for NNSA

EST.1943

CSEWG Meeting, BNL, Nov. 4-6, 2008

NNSX

Future work

- UQ of evaluated nuclear data is an ongoing process
- Improvements for specific LoFi covariance evaluations
 - Elements and reactions of importance to be specified
- UQ on PFNS to be completed for ^{235,238}U and ²³⁹Pu
- Continuous testing and upgrading of the NJOY processing code
- Testing of Covariance Matrices

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

