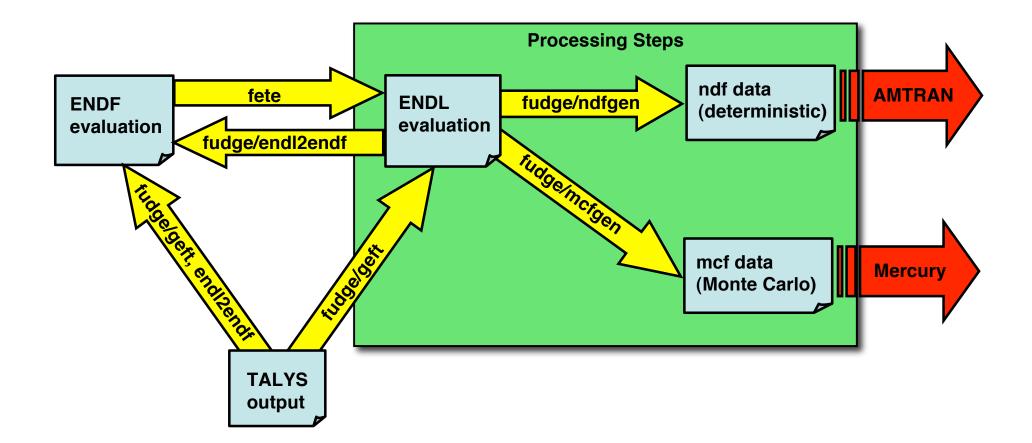
Lawrence Livermore National Laboratory

LLNL Nuclear Data Processing Codes

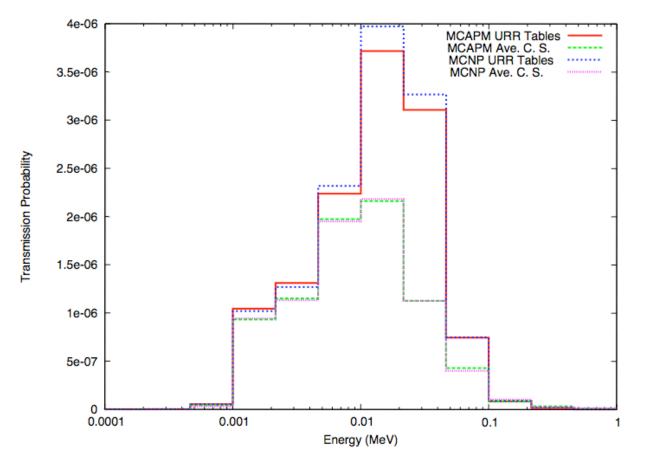
Neil Summers


Bret Beck, Frank Daffin, Chris Hagmann, Jason Pruet

Outline

- Schematic of LLNL Processing
- New Physics:
 - Unresolved Resonance Region data
 - Energy-dependent Q-values for fission
 - Expected-value momentum deposition
 - Atomic Fluorescence
- New Build System for MCAPM
- Re-writing Processing System to Use XML

LLNL Processing


New Physics:

Unresolved Resonance Region Data

- Use NJOY to generate probability tables
- Convert the NJOY output into ENDL format added new format type
- Modified MCFGEN to support new data type
- Modified MCAPM to support new data type
- Tested URR implementation
 - One test involved transmission of neutrons through a 70cm slab of ²³⁸U - results on next slide
 - Another test was the BigTen criticality problem

New Physics: Unresolved Resonance Region Data

Neutron Transmission Probability through 70cm of ²³⁸U

New Physics:

Energy-dependent Q-values for Fission

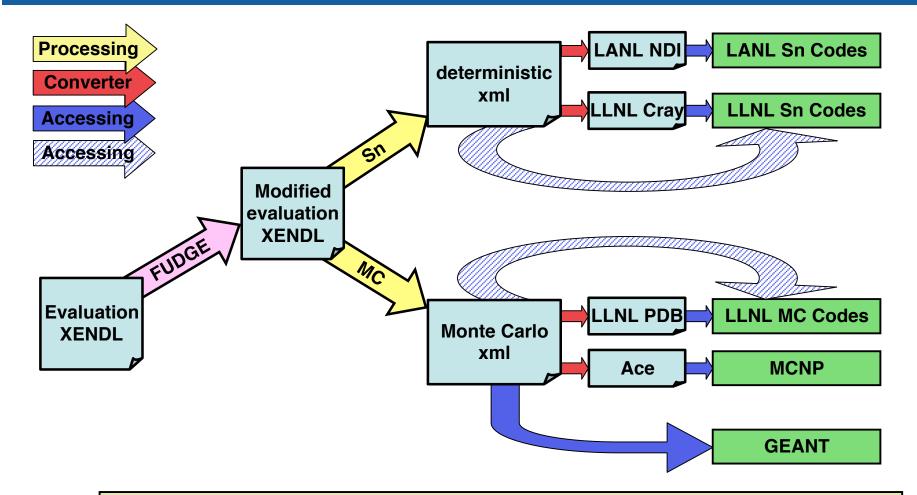
- Utilizing Madland's method* for generating energy-dependent Q-values
- List of Isotopes with Q(E):
 - Z = 89; A = 225, 226, 227
 - Z = 90; A = 227, 228, 229, 230, 231, 232, 233, 234
 - Z = 91; A = 229, 230, 231, 232, 233
 - Z = 92; A = 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241
 - Z = 93; A = 234, 235, 236, 237, 238, 239
 - Z = 94; A = 236, 237, 238, 239, 240, 241, 242, 243, 244, 246
 - Z = 95; A = 240, 241, 242, 243, 244
 - Z = 96; A = 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250
 - Z = 97; A = 245, 246, 247, 248, 249, 250
 - Z = 98; A = 246, 248, 249, 250, 251, 252, 253
- Converted data into ENDL format
- Modified NDFGEN and MCFGEN to handle Q(E) data
- Verified processed data matched the expected Q(E) dependence

*Madland, D.G., Nuclear Physics A, 722, (2006), 113-137

New Physics:

Expected-value momentum deposition

- Analogous to Expected-value energy deposition
- ENDEP code generates ENDL files with
 - vs. incident E
 - For each reaction
 - For each occurring projectile (e.g. n,p,d,t,³He, α , γ)
- In Monte Carlo codes calculate
 - Expected-value momentum deposition by reaction
 - $\langle p \rangle = \langle p \rangle_{inc} \Sigma \langle p \rangle_{tracked proj}$
 - Reaction cross-section averaged momentum deposition also available



New Physics: Atomic Fluorescence

- MC now samples fluorescent photons for each photoelectric reaction
- Based on
 - EPDL97 : contains photoelectric cross sections by subshell (K, L₁, L₂, L₃, M₁...)
 - EADL : contains x-ray energies and yields for each subshell vacancy
- Store characteristic x-ray energies & yields by subshell w/ E_{min} = 1 keV

We are rewriting processing codes to be more developer and user friendly, and write Structure Based (XML) output data: xProcessing

Writing codes to convert new xml output into legacy output until xml access routines have legacy wrappers or users codes are re-written to handle new access routines.

xProcessing - continued: Deterministic processing

Deterministic processing:

- LLNL legacy code is ndfgen
 - Fortran with Cray pointers: problem for coding and portability
 - Fixed-size, allocated memory a problem
 - Very time consuming to debug or add new features
 - Output is ASCII which is converted to a Cray binary format.
- New code is xndfgen
 - Mainly written in Python
 - Computationally intensive parts written in C++
 - Can process all of ENDL99
 - Wrote a python code to convert xndfgen's XML output into the legacy format.
 - Have compared output to legacy code output

xProcessing - continued: Monte Carlo

Monte Carlo processing:

- LLNL legacy code is mcfgen
 - Fortran with Cray pointers
 - Very time consuming to debug or add new features
 - Output is:
 - ASCII which is converted to a Cray binary format.
 - Or, a newer pdb which is not as good.
- New code xmcfgen
 - Completely written in Python
 - Can process all of ENDL99
 - Wrote a python code to convert xndfgen's XML output into the legacy ASCII format.
 - Have compared output to legacy code with good agreement

xProcessing future development

- We already have basic reader for the XML data
 - Collaborating with SLAC people to implement in GEANT
- Deterministic processing
 - Will implement all ENDF "type" data
 - Will implement support for an XML based input
 - Plan to write XML output to Los Alamos NDI format converter
- Monte Carlo
 - Will implement all ENDF "type" data
 - Will implement support for an XML based input
 - Will write XML output to pdb (and Ace) format converter
- Hope to have all this done during 2009
 - Release of XML format specification
 - Beta release of codes

