

Estimates of ⁵⁵Mn and ⁹⁰Zr neutron cross-section covariances

M.T. Pigni^{*}, M. Herman, R. Arcilla, P. Obložinský National Nuclear Data Center, Brookhaven National Laboratory Upton, NY, 11973-5000

November 5, 2008

^{*}Electronic address: pigni@bnl.gov

Brookhaven Science Associates 1/9

Introduction

- ✓ Neutron cross-section covariance estimates of 55 Mn and 90 Zr
- ✓ The method to estimate covariances at BNL \Rightarrow
 - Resonance region : Covariance module & ATLAS (BNL)
 - Fast neutron region : Bayesian code KALMAN (LANL)
- ✓ Essential point in our methodology is
 - resonance parameters from ATLAS and, eventually, their correlations.
 - the estimate of model parameter uncertainties, second, the selection of reliable experimental data and related (statistical and systematical) uncertainties.

Goal: cross sections and covariances

INTRODUCTION GOAL RESONANCE REGION PARAMETERS METHOD RESULTS: ⁵⁵MN RESULTS: ⁹⁰ZR CONCLUSIONS

Materials

- ⁵⁵Mn and ⁹⁰Zr

Cross sections

- Estimated cross sections, $\sigma(E)$, should coincide with evaluated cross sections in the ENDF/B-VII.0 library: $\sigma(E; \mathbf{x}) \simeq \sigma_{\text{B-VII.0}}(E)$

• Reaction-types and covariances

Total - MT=1 (n, n') - MT=4 (n, 2n) - MT=16

 (n, γ) - MT=102

 $\mathcal{D}[\mathbf{x}] \equiv \langle \Delta x_{\ell} \Delta x_m \rangle$

$$\mathcal{D}[\boldsymbol{\sigma}] \equiv \langle \Delta \sigma_i \Delta \sigma_j \rangle$$

Off-diagonal covariance

$$\mathfrak{C}[\pmb{\sigma}^{(\mu)},\pmb{\sigma}^{(\nu)}] \equiv \langle \Delta \sigma_i^{(\mu)} \Delta \sigma_j^{(\nu)} \rangle$$

Resonance region: file 32

Relative uncertainties (44-group representation): BNL \rightarrow resonance parameters and related uncertainties (ATLAS) ORNL taken from ENDF/A

Resonance region: file 32

⁵⁵Mn(n, γ) correlation matrix comparison (44-group representation)

Model parameters: fast neutron region

INTRODUCTION GOAL RESONANCE REGION ▷ PARAMETERS METHOD RESULTS: ⁵⁵MN RESULTS: ⁹⁰ZR CONCLUSIONS

Table 1: Uncertainties (in %): r - radius, a - diffuseness, V - real depth, W - imaginary depth. The subscripts v, s, and w, respectively, denote real volume, real surface, and imaginary surface.

Δr_s^{tg} 3-5	$\Delta r_v^{tg} \ 5$	$\Delta r_w^{tg} \ 5$	${\Delta V_v^{tg}} 5$	ΔW_s^{tg} 3-5
$\frac{\Delta W_v^{tg}}{5}$	Δa_s^{tg} 5	Δa_v^{tg} 5	$\frac{\Delta V_v^{np}}{5}$	$\frac{\Delta W_s^{np}}{5}$

Table 2: Uncertainties (in %): \tilde{a} - total level density, \tilde{g} - singleparticle level density, f_{γ} - γ -strength functions, and mfp - nucleon mean-free path; Def - deformation in DWBA.

$\Delta \tilde{a}^{cn}$	$\Delta \tilde{a}^{tg}$	$\Delta \tilde{a}^{n2n}$	$\Delta \tilde{a}^{np}$	$\Delta ilde{g}^{np}$	$\Delta ilde{g}^{tg}$	Δf_{γ}	Δ mfp	ΔDef	
15	15	15	15	15	15	10-15	25	35	

Evaluation method: fast neutron region

INTRODUCTION GOAL RESONANCE REGION PARAMETERS METHOD RESULTS: ⁵⁵MN RESULTS: ⁹⁰ZR CONCLUSIONS

$$\begin{aligned} \boldsymbol{\sigma}(\mathbf{x}) &= (\sigma_1(\mathbf{x}), \dots, \sigma_r(\mathbf{x}))^{\mathrm{T}} & \text{with} \quad \sigma_i(\mathbf{x}) \equiv \sigma(E_i; \mathbf{x}) \\ \dot{\boldsymbol{\sigma}}(\mathbf{x}) &= \frac{\partial \boldsymbol{\sigma}(\mathbf{x})}{\partial \mathbf{x}'} \equiv \left[\left(\frac{\partial \sigma_i(\mathbf{x})}{\partial x_j} \right) \right] & (\text{sensitivity matrix}), \\ \mathcal{D}[\boldsymbol{\sigma}]_{\mathbf{x}} &= \dot{\boldsymbol{\sigma}} \mathcal{D}[\mathbf{x}] \, \dot{\boldsymbol{\sigma}}^{\mathrm{T}} = \mathcal{D}[\dot{\boldsymbol{\sigma}}\mathbf{x}] & (\text{prior covariance matrix}). \\ \mathbf{y} &= \mathbf{x} + \mathcal{D}[\mathbf{x}] \dot{\boldsymbol{\sigma}}^{\mathrm{T}} (\mathcal{D}[\boldsymbol{\sigma}] + \mathcal{D}[\boldsymbol{\eta}])^{-1} (\boldsymbol{\eta} - \boldsymbol{\sigma}(\mathbf{x})), \\ \mathcal{D}[\mathbf{y}] &= \mathcal{D}[\mathbf{x}] - \mathcal{D}[\mathbf{x}] \dot{\boldsymbol{\sigma}}^{\mathrm{T}} (\mathcal{D}[\boldsymbol{\sigma}] + \mathcal{D}[\boldsymbol{\eta}])^{-1} \dot{\boldsymbol{\sigma}} \mathcal{D}[\mathbf{x}], \\ \mathcal{D}[\boldsymbol{\sigma}]_{\mathbf{y}} &= \dot{\boldsymbol{\sigma}} \mathcal{D}[\mathbf{y}] \, \dot{\boldsymbol{\sigma}}^{\mathrm{T}} = \mathcal{D}[\dot{\boldsymbol{\sigma}}\mathbf{y}] & (\text{post covariance matrix}). \end{aligned}$$

6

Evaluation method: fast neutron region

INTRODUCTION GOAL RESONANCE REGION PARAMETERS ▷ METHOD RESULTS: ⁵⁵MN RESULTS: ⁹⁰ZR CONCLUSIONS

 $\Delta \eta = 6-7\%, \Delta u = 2\%, (\mathcal{D}[\eta])_{i,i} > 0$ $\mathcal{D}[\boldsymbol{\eta}] = \mathbf{U} + \mathbf{W},$ $2.4 \cdot 10^{-2}$ Incident Neutron Energy (MeV) where $2.2 \cdot 10^{-2}$ $2.0.10^{-2}$ $(\mathcal{D}[\boldsymbol{\eta}])_{i,j} = \begin{cases} u_{i,j} + w_{i,j} & i = j \\ w_{i,j} & i \neq j \end{cases}$ $1.8 \cdot 10^{-2}$ $1.6 \cdot 10^{-2}$ $1.4 \cdot 10^{-2}$ 3 3 5 8 4 6 Incident Neutron Energy (MeV) $\mathbf{y} = \mathbf{x} + \mathcal{D}[\mathbf{x}]\dot{\boldsymbol{\sigma}}^{\mathrm{T}}(\mathcal{D}[\boldsymbol{\sigma}] \leftarrow \mathcal{D}[\boldsymbol{\eta}])^{\mathrm{T}}(\boldsymbol{\eta} - \boldsymbol{\sigma}(\mathbf{x})),$ $\mathcal{D}[\mathbf{y}] = \mathcal{D}[\mathbf{x}] - \mathcal{D}[\mathbf{x}]\dot{\boldsymbol{\sigma}}^{\mathrm{T}}(\mathcal{D}[\boldsymbol{\sigma}] \leftarrow \mathcal{D}[\boldsymbol{\eta}])^{\mathsf{T}}$ $\dot{\boldsymbol{\sigma}} \mathcal{D}[\mathbf{x}],$ $\mathcal{D}[\boldsymbol{\sigma}]_{\mathbf{v}} = \dot{\boldsymbol{\sigma}} \mathcal{D}[\mathbf{y}] \dot{\boldsymbol{\sigma}}^{\mathrm{T}} = \mathcal{D}[\dot{\boldsymbol{\sigma}}\mathbf{y}]$ (post covariance matrix).

Evaluation method: fast neutron region

INTRODUCTION GOAL RESONANCE REGION PARAMETERS ▷ METHOD RESULTS: ⁵⁵MN RESULTS: ⁹⁰ZR CONCLUSIONS

 $\Delta \eta = 6-7\%, \Delta u = 2\%, (\mathcal{D}[\eta])_{i,i} > 0$ $\mathcal{D}[\boldsymbol{\eta}] = \mathbf{U} + \mathbf{W},$ 1.0 Incident Neutron Energy (MeV) where 0.5 $(\mathcal{D}[\boldsymbol{\eta}])_{i,j} = \begin{cases} u_{i,j} + w_{i,j} & i = j \\ w_{i,j} & i \neq j \end{cases}$ 0.0 -0.5 3 -1.0 3 5 8 4 6 7 Incident Neutron Energy (MeV) $\mathbf{y} = \mathbf{x} + \mathcal{D}[\mathbf{x}]\dot{\boldsymbol{\sigma}}^{\mathrm{T}}(\mathcal{D}[\boldsymbol{\sigma}] + \mathcal{D}[\boldsymbol{\eta}])^{\mathrm{T}}(\boldsymbol{\eta} - \boldsymbol{\sigma}(\mathbf{x})),$ $\mathcal{D}[\mathbf{y}] = \mathcal{D}[\mathbf{x}] - \mathcal{D}[\mathbf{x}]\dot{\boldsymbol{\sigma}}^{\mathrm{T}}(\mathcal{D}[\boldsymbol{\sigma}] \leftarrow \mathcal{D}[\boldsymbol{\eta}])^{\mathsf{T}}$ $\dot{\boldsymbol{\sigma}} \mathcal{D}[\mathbf{x}],$ $\mathcal{D}[\boldsymbol{\sigma}]_{\mathbf{v}} = \dot{\boldsymbol{\sigma}} \mathcal{D}[\mathbf{y}] \dot{\boldsymbol{\sigma}}^{\mathrm{T}} = \mathcal{D}[\dot{\boldsymbol{\sigma}}\mathbf{y}]$ (post covariance matrix).

Results for ⁵⁵Mn (uncertainties)

NNDC

Results for ⁹⁰Zr (uncertainties)

INTRODUCTION GOAL RESONANCE REGION PARAMETERS METHOD RESULTS: ⁵⁵MN ▷ RESULTS: ⁹⁰ZR CONCLUSIONS

Conclusions

- ✓ We produced estimates of covariances for ⁵⁵Mn and ⁹⁰Zr in resonance region and in fast neutron energy region coupled to the ENDF/B-VII.0 cross sections.
- Our results are based on the resonance module EMPIRE-ATLAS and the EMPIRE-KALMAN approach using statistical and systematic uncertainties taken from almost 30 selected experiments.
- Systematic analysis on the impact of correlation in resonance parameters.
- Improvements of prior cross sections and, consequently, of sensitivity matrices.
- Deeper analysis in the statistics and systematics of experimental data (in collaboration with Otto Schwerer).
- More accurate covariance analysis on other reaction-type such as (n,p) and (n,α).

