New neutron-induced cross-section measurements for improved nuclear data

K. H. Guber, P. E. Koehler, D. Wiarda, J. A. Harvey, L. C. Leal, H. Derrien, T. S. Bigelow, C. Ausmus, D. R. Brashear and J. A. White

Oak Ridge National Laboratory, Oak Ridge, TN, USA

TO BO AND 200-MI FLIGHT STATION

Modified capture set up at FP7

- Some problems with the old data:
 - Underestimated neutron sensitivity correction, new set up has significantly less structure
 - Low-energy cut off of 3 keV
 - No high energy (>100 keV) data
 - Incorrect weighting function
- New set up overcome these problems.

Ex: Large neutron sensitivity of older measurements led to many erroneously-large resonance areas in current evaluations.

New & Improved ORELA Transmission Apparatus

- Transient digitizer (Acqiris DC-270) replaced old CAMAC TDC and several NIM modules.
- Allows simultaneous measurement of time of flight and pulse height Previous system for ⁶Li-glass detector was 1-D (TOF only), and for NE-110 detector had only 4 pulse-height channels. Allows simultaneous use of both types

of detectors.

- Unlimited stops per start Previous system limited to 8 stops/start (LeCroy 4208 TDC)
- Fewer NIM and CAMAC modules Simpler and more reliable

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Simplified schematic of neutron transmission

• For transmission, separate measurements of sample in and sample out N = d

$$T = e^{-N\sigma_T d}$$

Neutron Capture and Transmission Data for Natural Cr compared to ENDF/B-VII

⁵³Cr Data compared to ENDF/B-VII Parameters

ORELA ⁵³CrO₂ Transmission Data compared to ENDF/B-VII

U. S. DEPARTMENT OF ENERGY

⁵⁸Ni Data compared to ENDF/B-VII Parameters

⁶⁰Ni Data compared to ENDF/B-VII Parameters

New ${}^{95}Mo(n,\gamma)$ and σ_{t} Measurements at the Oak Ridge Electron Linear Accelerator (ORELA)

 ⁹⁵Mo(n,γ) measured using new apparatus on F.P. 6 at 40 m.

C₆D₆ using PHWT. ⁶Li-glass flux monitor. Separate background measurements. <u>Modified to measure</u> coincidence PH data.

⁹⁵Mo σ_t measured on F.P.
1 at 80 m.
⁶Li-glass detector.
Separate sample-out, CH₂, and Bi measurements.
Transmission.

Oak Ridge National Laboratory U. S. Department of Energy

"CINDORELA"

Capture of Incident Neutrons Detector at ORELA

New ${}^{95}Mo(n,\gamma)$ and σ_{t} Data from ORELA

Resonance analysis using SAMMY. 318 resonances to 10 keV. Only 106 previously known. Only 32 previous firm J^{π} assignments.

 Transmission data yield parity of resonance if neutron width is large enough.

```
Transmission = exp(-n\sigma_{t})
```


New Method for Determining \mathcal{J}^{π} Values

- Uses information contained in capture γ -ray cascade. Higher spins expected to have higher γ -ray multiplicity. Higher spin => more coincidences and softer singles spectrum.
- Use several "off-line" gates on singles and coincidence pulse-height data to construct ratios maximizing ${\cal J}$ and π differences.

⁹⁵Mo(n,γ) ⁹⁵Mo(n,γ) Singles, 3⁴ 12 10¹ Coincs., 3⁴ Sinales 2⁺ Counts (normalized to 100) Counts (normalized to 100) Singles, 3⁴ Coincs., 2 10 Coincs., 3 Singles 2⁺ Coincs., 2 8 10⁰ 6 10⁻¹ 0 10⁻² 0 10 20 30 40 50 10 20 0 30 40 50 60 Channel Channel

Pulse-height spectra: 2⁺ vs. 3⁺

Comparison of Recent $95Mo(n,\gamma)$ Experiments

• DANCE @ Lujan

· CINDORELA

New Method for Determining Resonance $J^{\pi's}$: Results

•Some combinations separate π as well as J.

⁹⁵Mo+*n* Resonance J^{π} 's: Results So Far

What	Previous	Present
E _n range (keV)	0 - 2.14, 3.13 - 4.96	0 - 10
Resonances	106	318 178 to 5.4 keV
Firm J	33	146
Firm π	37	144
Firm J ^π	32	134

Summary FY08

- ORELA delivered 1720 hours of beam in FY08 with an average power of 5 kW.
- Neutron Capture:
 - Natural Cr, ⁵³Cr, ⁵⁸Ni, ⁶⁰Ni, Natural Ti, ⁴⁸Ti
- Neutron Transmission:
 - Natural Cr, ⁵³Cr for thin and thick sample
 - Natural Ti, ⁴⁸Ti for thin and thick sample
- Data for Cr, ⁵³Cr, ⁵⁸Ni, ⁶⁰Ni are reduced to cross section and being analyzed.
- New FP6 capture set up allows to determine J and $\pi.$ Example: ^{95}Mo

