

... for a brighter future

Argonne_{llc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Member of the US Nuclear Data Program

Experimental Nuclear Data Activities at ANL

Filip G. Kondev

Applied Physics & Nuclear Data Nuclear Engineering Division

(supported by the Office of Nuclear Physics, US DOE)

Highlights

□ Decay studies of selected actinide nuclei (with I. Ahmad & J. Greene, ANL-PHY & A.L. Nichols & M.A. Kellett, IAEA - part of the ANL commitment to the IAEA-CRP on *"Updated Decay Data Library for Actinides"*

studies of ²³³Pa, ²³⁷Np, ²⁴⁰Pu, ^{242m}Am, ^{243,244,245,246}Cm & ^{249,250}Cf using α-decay and γ-ray spectroscopy techniques and mass separated sources
during FY08 work focused on priority nuclides identified by the IAEA-CRP where large data discrepancies exist: ²³³Pa, ²⁴³Cm & ²³⁷Np

Development of ANL TAGS (ANL LDRD project – ANL-NE and PHY & ANSTO/ANU, Australia) – AFC (decay heat at short cooling times), Homeland Security (cargo inspections) & astrophysics applications – in conjunction with CARIBU RIB facility at ANL, based on 1Ci - ²⁵²Cf source (will be operational in FY09)

Studies of ²³⁶**Np with GS and CHICO** (ANL, LLNL,UR, Kolkata) – data relevant to ²³⁷Np(n,2n)²³⁶Np CS measurements

Studies at the accelerator driven sub-critical facility YALINA (NNSA sponsored: Y. Gohar, G. Aliberti, A. Talamo, Z. Zhong, FGK & colleagues from JIPNR-Sosny)
successfully converted from 90% HEU to 36% LEU – full characterization of the assembly at different fuel loadings – reactivity, activation & spectra unfolding measurements – detailed analysis at ANL using various ND libraries

²³³Pa γ–ray emission probabilities

it has been of a special interest since the first IAEA-CRP (1977-1984)

very high-precision measurement on P_γ (312 keV), e.g. 38.6 (5) % (Gehrke et al.), 38.6 (15) % (Smith et al.), 38.5 (4)% (Schotzig et al.), 38.65 (39) % (Vaninbroukx et al.), 38.7 (4) % (Woods et al.), 37.80 (23) % (Luca et al.), BUT ...
41.6 (9) % (Harada et al. J. Nucl. Sci. and Techn. 43 (2006) 1289)

at the last two meetings inconsistencies for $P_{\gamma}(28.6 \text{ keV})$ were pointed out

E_{γ}/keV	P_{γ} (%)									
	Albridge et al. (1961)	Valkeapaa et al. (1973) ^a	Gehrke et al. (1979)	Vaninbroukx et al. (1984)	Kouassi et al. (1990) ^a	Luca et al. (2000)	Schotzig et al. (2000)	Woods et al. (2000)	Luca et al. (2002)	Shchukin et al. (2004)
28.559(10)		0.070(8)		0.15(1)	0.075(8)	0.034(10)			0.034(10)	0.019(2)

Why is important? – 28.6 keV (M1+E2) transition determines the β – feeding to the 5/2+, 340 keV level - strongly fed in β – decay of ²³³Pa:

 $P_{\gamma,tot}(28.6 \text{ keV})=P_{\gamma}(28.6 \text{ keV})^{*}(1+\alpha_{T})=P_{\gamma}^{*}311!$

- there are differences between various measurements
- □ there are differences between various evaluations

Argonn

Let there has been a lot of effort in the past, but the decay scheme is still "discrepant"

²³³Pa γ–ray emission probabilities - cont

CSEWG- USNDP Meetings, BNL, November 4-7, 2008

4

²³³Pa γ–ray emission probabilities - cont

New measurements at ANL – (August/September 2008)

using a chemical separation to extract ²³³Pa from ²³⁷Np

- procedure was similar to that used by Gehrke et al. dissolved ²³⁷Np material (in equilibrium with ²³³Pa) in HNO₃ – transferred the solution to a beaker and dried it – use 4 M of HNO₃ to dissolve ²³⁷Np (but not ²³³Pa) – repeat the procedure several times to achieve the desired purity
- several sources were produced and measured with 3 cm³ LEPS & 25% Ge detectors – efficiency calibration determined using a calibrated mixed source containing ^{57,60}Co, ⁸⁵Sr, ⁸⁸Y, ¹⁰⁹Cd, ¹¹³Sn, ¹³⁷Cs, ¹³⁹Ce, ²⁰³Hg and ²⁴¹Am nuclides, and isotopically pure ²⁴³Am source – accuracy ~1% for low- and high-energy photons

²³³Pa y-ray emission probabilities - cont

- Compton background associated with much stronger high-energy γ–rays of ²³³Pa
- ✓ $P_{\gamma}(29.4/^{237}Np)/P_{\gamma}(75.3/^{233}Pa) = 10.6$ (1)
- no ²³³Pa 75.3 keV line (²³³Pa) is gone pure Pa X-rays (from decay of ²³⁷Np)
- Compton background associated with the high-energy γ–rays of ²³³Pa is reduced
- ✓ 29.4 keV ²³⁷Np line is significantly reduced, e.g. $P_{\gamma}(29.4/^{237}Np)/P_{\gamma}(75.3/^{233}Pa) = 0.060$ (17)
- / pure U X-rays
- S(28.6 keV)=9000 counts statistical uncertainty of about 1%

²³³Pa γ–ray emission probabilities - cont

E _γ /keV	P_{γ} (%)										
	Albridge et al. (1961)	Valkeapaa et al. (1973) ^a	Gehrke et al. (1979)	Vaninbroukx et al. (1984)	Kouassi et al. (1990) ^a	Luca et al. (2000)	Schotzig et al. (2000)	Woods ((2000)	etal. I (.uca et al. 2002)	Shchukin et al. (2004)
28.559(10)		0.070(8)		0.15(1)	0.075(8)	0.034(10)			0	.034(10)	0.019(2)
	Eγ, keV	present	Valkea	paa73 I	Kouassi90	Gehrke7	79 Vani	n.84	Woo	ds88	
	28.57	0.076 (3)	0.06	8(8)	0.074 (8)		0.15	5 (1)	0.068	8 (9)	
	29.37	0.0169 (15)								
	39.77	0.0034 (9))								
	40.33	0.0228 (14	.) 0.03	9 (8)	0.024 (4)						
	41.65	0.0121 (10) 0.01	3 (4)	0.014 (3)						
	75.26	1.27 (3)	1.25	5 (8)	1.25 (9)	1.39 (8)) 1.30) (4)	1.25	(9)	
	86.57	2.00 (4)	1.87	(23)	1.93 (11)	1.97 (12	.)		1.87	(25)	
	94.64	8.51 (17)									
	98.42	13.70 (27))								
	103.84	0.85 (2)	0.73	3 (8)	0.847 (6)	0.87 (3)	0.87	(3)	0.73	(9)	
	110.41	1.64 (3)									
	111.30	3.23 (7)									
	114.48	1.31 (3)									
	115.38	0.423 (9)									
	271.57	0.361 (12)) 0.30) (3)	0.334 (17)	0.33 (1)	0.32	2(1)			
	300.16	6.41 (13)	6.57	(31)	6.76 (6)	6.62 (10) 6.64	. (6)	6.57	(46)	
	311.94	38.6 (5)				38.6 (5)	38.65	5 (39)			

ANL TAGS - introduction

- ✓ lack of pure, intense FP sources
- lack of modern detector systems in past β⁻ decay studies

"Pandemonium" effect

J. C. Hardy *et al.*, Phys. Lett. <u>71B</u> (1977) 307

Parent (Z,N)

"large" $Q_{\beta-}$ – large density of levels and more complicated decay schemes – usually low γ -ray multiplicities, but isomers!

J. Katakura et al., JNST, Suppl. 2 (2002) 444

- JENDL FP (based on ENSDF) "contaminated" by Gross Beta-decay Theory for ~500 FP (almost half of all FP)!
- there are significant differences between various libraries, e.g. JEFF vs. JENDL vs. ENDF
- about 50 cases studied using TAGS, but there are also drawbacks
- only a handful of cases studied with modern γ– ray arrays (e.g. GSI, ORNL)

ANL TAGS – cont.

<u>ANL LDRD/DCG funding – C.J. Chiara, F.G. Kondev (NE), K. Lister (PHY),</u> <u>M. Smith (ANSTO/ANU)</u>

based on the INEL NaI(Tl) detector

developing necessary infrastructure – electronics, tape-moving system, shielding, etc.; tests using RA sources

possibility to use other state-of-the art equipment at ANL – GS & FMA

Argonne

ANL TAGS – cont.

- Development of data analysis tools in conjunction with GEANT simulations (ENSDF data are incorporated so that helps, but will need human intervention, as well ...)
 - TAGS data analysis is not straight-forward uncertainties?

$$d_i = \sum_{j=0}^{j_{max}} R_{ij} f_j, \ i = 1, i_{max}$$

- *d* = observed spectrum; *f* = level feeding distribution (decay scheme); *R* = response function of detector folded with the decay scheme
- ✓ we are developing a new unfolding method (faster) that would allow to use MC procedure to determine uncertainties the idea is similar to that of A. Koning and others in CS studies the modeling work on FP at LANL is also of very high value!

□ approved ATLAS experiment on "Beta-delayed fission studies in the Pb region" (in collaboration with LANL) – opportunity to test the equipment and analysis tools

□ will participate early next year in an IAEA consultants' meeting (in collaboration with NEA-OECD) to coordinate effort and enhance collaborations with groups from EU & India – a lot of new data expected in the foreseen future – good news for DE!

Data relevant to ²³⁷Np(n,2n)²³⁶Np CS

Data relevant to ²³⁷Np(n,2n) CS –cont.

ANL, LLNL, University of Rochester, Kolkata collaboration

Experiment: **deep inelastic reactions** in conjunction with **GS** & **CHICO**: ¹¹⁶**Sn** + ²³⁷**Np** @ 800 MeV/~20% above CB ✓ information on excited structures, deformation, level structures & densities + interesting physics! ✓ Doppler correction for projectile like and target like recoils with their velocities determined by CHICO

Argonne

