Nuclear Data Experiments at LANSCE: Highlights 2008

Robert C. Haight Los Alamos National Laboratory

Cross Section Evaluation Working Group Meeting US Nuclear Data Program Meeting Brookhaven National Laboratory November 4-7, 2008

LA-UR-08-06961

Nuclear data measurements at LANSCE are made with several instruments

LSDS

DANCE (n,γ)

N,Z (n,charged particle)

Fission

Double Frisch-grid fission chamber; also standard fission ion chamber; new detector station for fission and (n,alpha)

Nuclear data experiments at LANSCE use neutrons at the Lujan Center, Target 2 and Target 4

FIGARO (n,xn+γ)

Contact: Bob Haight Ron Nelson Matt Devlin

Present and future experiments at FIGARO/WNR: neutron-emission spectra and v-bar in fission

Fissionable isotopes: CEA fission chambers in beam

- ²³⁵U, ²³⁹Pu(n,f) fission neutron spectra (1-8 MeV)
 - Analyzed for incident neutron energies of 1 50 MeV LA-UR-08-2585
- New measurement for ²³⁹Pu(n,f) data taken recently
 - Better fission chamber, less background

Other materials: Gamma-ray trigger (HPGe, BaF₂, etc.)

• ⁵⁶Fe,^{all-A}Mo --In progress

 $1 \text{ MeV} < \text{E}_{n} < 200 \text{ MeV}$

Fission physics might be illuminated by the measurement of neutron spectrum from fission

- "Pre-scission" neutrons
- Temperatures (excitation energies) of fragments
- Spectrum changes with energy of incident neutron:
 - Temperature of fragments, pre-equilibrium neutron emission
 - prior to fission, angular distribution effects

FIGARO array of fast neutron detectors

FIGARO (n,xn+y)

• 20 liquid scintillator neutron detectors

Double time-of-flight experiment

Here are some results -- shapes of fission neutron spectra, arbitrarily normalized

Incident $E_n = 2$ to 3 MeV

Other incident neutron energies show trends

Incident $E_n = 5$ to 6 MeV

NNS

Pre-equilibrium emission becomes obvious at higher incident neutron energies

Incident $E_n = 20$ to 25 MeV

Previously we reported average fission neutron energies for ²³⁵U (n,f) and ²³⁸U (n,f)

235**U**

Program of fission neutron output measurements continues

- Reduce background from accidental coincidences
 - Came from neutron scattering on backing foils
 0.12 mm Pt
 - Presently we are using a much better chamber
- Measure fission neutrons below 1 MeV
 - Need better n-gamma discrimination
- Measure fission neutrons better above 8 MeV
 - Better timing on fission chamber (LLNL-LANL collaboration)
 - More efficient neutron detectors (larger solid angle for detection)
- Quantify uncertainties better → covariances
- More isotopes ²³⁵U, ²³⁹Pu, ²³⁸U, ²³⁷Np, ²⁴⁰⁻²⁴⁴Pu, etc.

N,Z Reactions

Z = p, d, t, 3 He, α

Contacts: Matt Devlin Terry Taddeucci Bob Haight

The ⁶Li(n,α)t cross section is a standard at low neutron energies (thermal to >10keV), but at MeV energies...

...the experimental data are somewhat discrepant: 20% variation from 1-3 MeV

Interferences between the resonances at 2 MeV leave the R-matrix fit unconstrained

From Gerald M. Hale and Hartmut M. Hofmann, Nuclear Data 2004, AIP Conf. Proc. 769, 2005, 75.

Differential cross section measurements

- Uses the N,Z ("Gas production") apparatus at LANSCE FP30R-A
- Incident neutron energies from Time-of-flight (TOF)
- Beam flux monitored with a ²³⁵U fission foil: resulting cross sections are relative to the ²³⁵U fission cross section
- Targets were ⁶LiF (216 μg/cm² of Li) on a thin mylar backing (0.84 mg/cm²), 2" diameter
- Triton data from 2006 and 2007 at eight laboratory angles: 20, 30, 45, 60, 75, 90, 120, and 135 degrees
 - Covering the incident neutron energy for tritons from 0.18 to >10 MeV
- α particle data at five angles (20-75 degrees)
 - Covering neutron energies between 1 and 20 MeV

⁶Li(n,t) α excitation function measurements

Some examples of results: data and R-matrix analysis for neutron energies from 200 keV – 10 MeV

⁶Li(n,t)α triton angular distribution measurements – comparison with other results

Our data indicate that the effects of the resonances near 2 MeV are stronger than the prior evaluation suggested.

The Zhang, et al. data appear to have systematic problems at low angles and near 90 degrees – these are probably known issues with the gridded ion chamber technique

⁶Li(n,α)t reaction cross section: implications of the new LANSCE data

GEANIE (n,xγ)

Contact: Ron Nelson Nik Fotiades Matt Devlin

Recent Neutron-Induced Gamma-Ray Measurements with GEANIE at LANSCE/WNR

 $1 \text{ MeV} < E_n < 200 \text{ MeV}$

- ^{203,205}TI(n,2nγ) N. Fotiades, levels, isomer lifetimes Phys. Rev. C 76, 0143092 (2007) and submitted to Phys. Rev. C.
- Isomer production in ^{191,193}Ir and ¹⁹⁷Au data analysis completed
- $^{nat}Lu(n,x\gamma)$, levels, isomers under analysis.
- ¹⁵⁰Sm(n,n'γ) pre-equilibrium analysis continuing NCState, LLNL
- ¹⁸⁶W(n,xγ) analysis in progress -- NCState, LLNL
- ^{70,72,74}Ge, ¹⁰⁰Mo,¹²⁴Sn, ¹³⁰Te, ¹³⁸Ba, data acquired.
- $natCu^{,76}Ge, natPb$, (LANL) and natTe (UCB) -- (n,x γ) for backgrounds in $0\nu\beta\beta$ decay experiments analysis in progress
- Fe, Cr (n,xγ) "Reference cross sections"

Excitation functions for ^{202,204}TI from ^{203,205}TI(n,2n)

Half-life measurements with **GEANIE**

- Measure decay gamma rays during the low background, beam-off period (~16ms)
- Times are established with a very stable 10 MHz clock

Especially well-suited for μs to ms time range

Level schemes for ^{202,204}TI

Level schemes for ^{202,204}TI

Reference cross sections provide the metric for other measurements

- Inelastic scattering and reactions at MeV neutron energies
 - A number of secondary standards have been proposed at the 5 to 10% level (C – 4439, AI – 2221 & 3004 keV, Si – 1778 keV, Fe – 847 keV, Cr 1434 keV)
 - Backgrounds tend to be larger due to reactions of neutrons in the detector and surroundings
 - Inelastic scattering on Fe has been used extensively as a secondary standard for neutron-induced gamma-ray production measurements – but there are large differences in measured cross sections and even some variation in evaluations
 - There are drawbacks to all of the above reference cross sections for the most typical incident neutron energy ranges of a few MeV for inelastic scattering and near 14 MeV

Contact: Ron Nelson

Significant differences exist in data sets and evaluations of $^{nat}Fe(n,x\gamma=0.847 \text{ MeV})$

Data evaluations differ on ⁵⁶Fe(n,xγ = 0.847 MeV) cross sections

Iron and aluminum in the detectors & experimental setup, as well as ⁷⁶Ge (7.83%), may produce backgrounds near 847 keV

Angular distribution coefficients for Fe($n,x\gamma$ = 0.847 MeV) show strong effects at low incident neutron energies

Search for a potentially better neutron-induced gamma-ray reference cross section

- Consider all stable elements prefer them to compounds
 - Eliminate gases and liquids (except as compounds)
 - Eliminate alkali metals
 - Eliminate rare earths that oxidize readily
 - Eliminate expensive (\$/g > Au) elements (Sc & Rh)
 - Require natural abundance > 70 %
- Look first at gamma ray energies $0.1 < E\gamma < 1.5$ MeV
- Want cross sections > 200 mb
- Consider compounds (e.g. BeO, Teflon (CF₂), Li₂CO₃, melamine (C₃H₆N₆),) with Be, C, or O that have very few gammas or mainly high energy gammas
- Next slide has results

Potential neutron-induced gamma-ray reference samples and their larger cross-section lines

• Chosen "best" cross sections for (n,n') and (n,2n)

Element	Isotope	Εγ	reaction	σ(14 MeV)	Εγ	reaction	σ(14 MeV)	Εγ	reaction	σ(14 MeV)
Niobium	93	949	(n,n')	264	501	(n,2n)	263	357	(n,2n)	239
Gold	197	147.8	(n,2n)	490	547.5	(n,n') 5.0	358			
Titanium	48	984	(n,n')	666	160	(n,2n+n')	404			
Iron	56	847	(n,n')	785	1238	(n,n'+2n)	393			
Chromium	52	1434	(n,n')	695	935	(n,n'+2n)	210			
Manganese	55	156	(n,2n)	542	126	(n,n')	383	212	(n,2n)	299
Magnesium	24	1369	(n,n')	450	472	(n,p) 20ms	105			
Vanadium	51	226	(n,2n)	368	320	(n,n')	313			
Bismuth	209	1006	(n,2n)	210	565.3	(n,2n)	125	650.7	(n,2n)	130

Cr – 1434- keV gamma ray from ⁵²Cr[83.709%](n,x γ) has good consistency for γ -ray cross sections at E_n = 14.5 MeV

- Measurements 6 of 7 agree within errors
- Evaluation of Simakov, *et al.* at E_n = 14.5 MeV gives a 3.8% error in the evaluated cross section

DANCE (n,γ)

Contact: John Ullmann Aaron Couture

MS

Recent DANCE Publications

- Spin measurements for ¹⁴⁷Sm + n resonances. P.E. Koehler, et al., Phys. Rev. C 76 025804 (2007)
- Spin and parity assignments for 94,95Mo neutron resonances. S.A. Sheets, et al.,

Phys. Rev. C 76 064317 (2007)

- Capture cross section of ⁶²Ni. A.M. Alpizar-Vicente, et al., Phys. Rev. C 77 015806 (2008).
- ²³⁷Np(n,γ) cross section. E.-I. Esch, et al., Phys. Rev. C 77 034309 (2008).
- [•] ²⁴¹Am (n,γ) cross section. M. Jandel et al., Phys. Rev. C 78 034609 (2008).

Analysis of DANCE neutron-capture data

⁷⁵ As	(August Keksis, Los Alamos)
⁸⁹ Y	(Andrii Chyzh, NCSU/Los Alamos)
¹⁴³ Nd, ¹⁴⁹ Sm	(Paul Koehler, Oak Ridge)
^{151,153} Eu	(U. Agvaanluvsan, Stanford; J.A. Becker Livermore. Data
	available as LLNL Report)
¹⁵² Eu	(Aaron Couture, Los Alamos. 30 MBq target!)
155,156,157,158,160 Gd	(North Carolina State University. B. Baramsai, D. Dashdorj, A. Chyzh, G. Mitchell)
^{175,176} Lu	(Olivier Roig, CEA)
^{203,205} TI	(Aaron Couture, Los Alamos)
^{240,242} Pu	(Aaron Couture, Los Alamos. Preliminary data reported to GNEP program)
^{242m,243} Am	M. Jandel (Los Alamos)

²⁴¹Am(n,γ) low-energy and thermal results

TABLE I.	Experimental and evaluated thermal neutron capture	
cross sections	and resonance integrals RI above 0.5 eV for ²⁴¹ Am.	

Reference	Year	$\sigma_{\rm th}$ (b)	RI (b)	
Experiment				
This work	2007	665 ± 33	1553 ± 7	
Nakamura <i>et al</i> .ª [2]	2007	690		
Fioni et al. [3]	2001	696 ± 48		
Maidana <i>et al</i> . [4]	2001	672 ± 10		
Shinohara et al. [5]	1997	854 ± 58	1808 ± 146	
Wisshak et al. [12]	1982	625 ± 35		
Belanova et al. [6]	1976	622		
Adamchuk et al. [7]	1976	600		
Kalebin et al. [8]	1976	625 ± 20		
Weston et al. [13]	1976	582 ± 50		
Harbour et al. [10]	1973	612 ± 25		
Dovbenko et al. [9]	1971	654 ± 104		
Pomerance [11]	1955	625 ± 35		
Evaluation				
Mughabghab [33]	2006	585 ± 12	1425 ± 112	
JEFF-3.1 ^b [30]	2006	647 ± 32	1526.4	
ENDF/B-VII.0° [29]	2006	620 ± 13		
JENDL-3.3 [31]	2002	639.4	1460	

^aDerived from $\sigma_{0,g} = 628 \pm 22$ b using branching ratio of 0.9 ± 0.09 for the isomer state production.

^bBased on Refs. [3,4,6,7].

^cBased on Refs. [8-13].

$^{241}Am(n,\gamma)$ results in resonance and UR regions

²⁴¹Am(n,γ), Low-energy resonances

TABLE II. Resonance parameters for neutron resonances in the energy region between 0.3 and 12 eV. The results obtained from the SAMMY fit to our data are compared with existing values from ENDF/B-VII.0 [29] and Mughabghab [33] evaluations. No error bars are given for our results if that particular parameter was kept fixed during the SAMMY fit.

ENDF/B-VII.0			Ν	/lughabghab [3	3]	This work		
E_0 (eV)	$\Gamma_{\gamma} \ (meV)$	$2g\Gamma_n ({\rm meV})$	$E_0 (eV)$	$\Gamma_{\gamma} \; (meV)$	$2g\Gamma_n \text{ (meV)}$	E_0 (eV)	Γ_{γ} (meV)	$2g\Gamma_n \text{ (meV)}$
0.308	46.9	0.056935	0.307(2)	46.8(3)	0.0560(5)	0.3051(2)	44.4(3)	0.0622(4)
0.576	47.3	0.0929	0.574(4)	47.2(3)	0.0923(2)	0.5724(3)	43.3(5)	0.1030(7)
1.276	47.9	0.322	1.268(4)	49.6(7)	0.320(8)	1.2718(4)	45.3(7)	0.347(4)
1.928	44.6	0.11133	1.930(5)	44.6(3)	0.113(2)	1.922(1)	41(2)	0.117(2)
2.372	44	0.071666	2.380(8)	42.7(3)	0.07(7)	2.363(2)	50(8)	0.078(3)
2.598	47.6	0.15	2.590(9)	46.6(6)	0.15(2)	2.599(2)	48(3)	0.147(4)
3.973	44.5	0.20966	3.97(1)	44.5(3)	0.22(6)	3.973	44.5	0.208(8)
4.968	43.8	0.17733	4.97(1)	43.8(4)	0.175(4)	4.968	43.8	0.178(7)
5.415	44.2	0.766	5.42(1)	44.2(1)	0.78(2)	5.415	44.2	0.74(2)
5.8	44.2	0.002	_	_	_	5.8	44.2	0.0020(2)
6.117	43.8	0.12366	6.12(1)	43.8(7)	0.127(2)	6.117	43.8	0.127(9)
6.745	44.2	0.032857	6.74(1)	_	0.030(2)	6.745	44.2	0.033(3)
7.659	44.2	0.04557	7.66(1)	_	0.039(2)	7.659	44.2	0.048(5)
8.173	42.7	0.107	8.17(1)	42.7 ± 1.2	0.107(3)	8.173	42.7	0.105(7)
9.113	44.2	0.37733	9.12(2)	44.2(6)	0.379(8)	9.113	44.2	0.364(24)
9.851	43.9	0.39766	9.85(2)	43.9(6)	0.40(1)	9.851	43.9	0.40(2)
10.116	44.2	0.0255	10.12(2)	_	0.026(1)	10.116	44.2	0.027(3)
10.403	42.4	0.148767	10.43(2)	42.4(8)	0.33(1)	10.404(6)	45(4)	0.35(2)
10.997	46.5	0.40333	10.98(2)	46.5(8)	0.40(2)	10.997	46.5	0.41(3)
11.583	44.2	0.021333	11.58(2)	-	0.016(1)	11.583	44.2	0.022(2)

Fission Cross Sections

Contact: Fredrik Tovesson Tony Hill

Status of fission cross sections measurements at LANSCE

$$\sim 1 \text{ eV} < \text{E}_{\text{n}} < 200 \text{ MeV}$$

- ²³⁷Np published
- ^{240,242}Pu submitted for publication
- ^{239, 241}Pu data to GNEP evaluators; publication in preparation
- ²⁴¹Am milestone for next year; sample needed
- ^{233,238}U planned
- ²³²Th sub-barrier cross section being measured

Pu-239 fission

- Final results delivered to GNEP Sept. 2008
- ENDF in better shape than JENDL in the MeV-region

Slide 40

Pu-241 fission

- 20% discrepancies in the 10 keV 1 MeV region
- First measurement above 30 MeV
- Only one other measurement in the resonance region in the last 30 years

LABORATORY 1.1943

Slide 4

Fission cross sections of ²³⁹⁻²⁴²Pu

Fission and Other Cross Sections On Very Small Samples

Contact: Bob Haight

A Lead Slowing-Down Spectrometer is under development, driven by 800 MeV protons from the PSR

Neutron trajectories following the interaction of 1 proton with the tungsten target in the lead cube

Contact: Bob Haight

Pulse stacking: to increase usable flux of neutrons

Pulse stacking will extend WNR source to lower usable neutron energies

Stack single micropulses in PSR for entire macropulse (Full-fill mode)

- For 10 keV neutrons need pulse separation of 7.2 μsec (10 m)
- Separate micropulses by 360 ns in macropulse. Get x20 { 7.2 /.36 } increase in current / macropulse.
- Stack in pulses in PSR for duration of Macropulse (625 μs)
- Operate PSR at 60 Hz: 20 Hz to Lujan Center 40 Hz to Target-4
- 17 msec between pulses, x8 average beam (at 40 Hz) compared 7.2 μsec at Target-4 (at 100 Hz)
- It may be possible to store several pulses in the PSR

 $\Delta t = 7.2 \ \mu sec$ Normal operation $\Delta t = .36 \ nsec$ with pulse stacking

Proton storage ring serves to stack pulses

Transmission resonances observed

- 15 cm iron
- ⁶Li glass detector
- Acqiris digitizer
- 2 minute run

Fission cross section resonances observed down in eV region

We address the needs of LANSCE sponsors

- National Nuclear Security Administration
 - Program in radchem cross section measurements
 - Neutron capture cross sections on radioactive targets (DANCE)
 - Cross section measurements on high-order (n,2n), (n,xn) reactions (GEANIE)
 - Program in neutron-induced fission measurements
 - Fission product distributions (GEANIE)
 - Energy output in fission: neutron and γ -ray spectra (FIGARO)
 - Nuclear properties of fission products and isomers (GEANIE and FIGARO)
- Office of Nuclear Energy
 - Measurements in support of the AFCI program include:
 - Capture and fission cross section on actinides
 - Gas production: (n,p), (n, α) reactions in structural materials
- Office of Science
 - Support of SNS in understanding pulsed radiation effects on liquid mercury targets
 - Fundamental physics experiments and nuclear data
- National Resource
 - Nuclear science User Facility for defense, basic and applied research
 - Industrial testing of semiconductor devices in neutron beams
 - University research in nuclear science

The LANSCE program in nuclear data involves many laboratories

- GEANIE LANL, LLNL, INL, ORNL, Bruyères-le-Châtel, NC State
- FIGARO LANL, Bruyères-le-Châtel, LLNL
- N,Z LANL, Ohio U
- DANCE LANL, LLNL, ORNL, NC State, INL, Colorado School of Mines, FZK Karlsruhe
- LSDS LANL, LLNL, BNL, Bruyères-le-Châtel, RPI
- Fission LANL, IRMM, LLNL, INL, RPI, NERI universities
- Others MIT, Kentucky, Kyushu, Harvard,...

