

Cross Section Measurements and Analysis at Rensselaer *Report to CSEWG November, 2008*

Y. Danon, R. C. Block, N. Francis, M. Lubert, M. Rapp, F. Saglime, R. Bahran, C. Romano, J. Thompson Rensselaer Polytechnic Institute, Troy, NY, 12180

> and D.P. Barry, N.J. Drindak, J.G Hoole, G. Leinweber, Molly Ernesti

KAPL Inc., Lockheed Martin Corporation, Schenectady, NY 12301-1072

Measurements Completed This Year

- Ti, Zr
 - High energy (0.5-20 MeV) transmission
- Be, Mo
 - High energy (0.5-20 MeV) neutron scattering
- Elemental Eu and ¹⁵³Eu
 - Epi thermal (2-2000 eV) transmission and capture
 - Thermal (0.01-20 eV) transmission
- ²³⁸U
 - Resonance scattering
- ²³⁹Pu fission fragment mass and energy distributions with the RPI LSDS
- Elemental Samarium
 - (n, α) cross section measurements with the LANL LSDS

Planned Measurements

- High energy (0.5-20 MeV) neutron scattering from Zr
- Resonance region (1 eV- 400 keV) transmission for Mo
 ORNL is preparing samples of ^{95,96,98,100}Mo.
- Capture measurements of ^{155,156,157,158,160}Gd (NCSP).
- Fission fragment mass and energy distributions of ²⁴⁸Cm
- (n, α) cross section measurements on ¹⁴⁹Sm with the LSDS

Data Analysis

Sample	Status
Rh	SAMMY analysis pending
Cd	REFIT analysis pending (Moxon has our data)
Re	Data analysis suspended
Eu	Data analysis started
U-236	New samples and a transmission measurement required for completion of this task
¹⁶⁴ Dy	Data analysis and resonance parameters of the epi-thermal region are in Molly Ernesti's MS Thesis.
Be,Mo,Zr,Ti	High energy (0.5-20MeV) transmission analysis in progress
Be, C, Mo	High energy (0.5-20MeV) scattering data analysis in progress

Water

High Energy Transmission Experimental Setup

Zr Total Cross Section Measurements (0.5-20 MeV)

- Used low Hf (less than 100 ppm) Zr metal
- ENDF/B 6.8 seems like a better fit for E<16 MeV
- New partially resolved structure below 2.0 MeV
- Data can be used to improve the unresolved resonance region evaluation

Ti Total Cross Section Measurements (0.5-20 MeV)

- The evaluation are generally in good agreement with the data
- Below 2 MeV the data has better energy resolution than the evaluation

Ti Total Cross Section Measurements 0.5-1 MeV energy region

- With the exception of
 JENDL3.3 and
 ENDF/B-7.0, all
 evaluations seem to
 have an energy shift.
- The JENDL/ENDF
 evaluation is based on
 low resolution data.

¹⁶⁴Dy Transmission Resonance Analysis

• Samples 98.6% enriched in ¹⁶⁴Dy

Eu Transmission compared to ENDF/B-7.0

Neutron Spectroscopy Group

²³⁸U Resonance Scattering

- Neutron scattering kinematics in the resonance region is normally treated as free gas.
- The derivation of the scattering kernel in most (if not all) Monte Carlo (MC) codes assumes a constant cross section
 - OK in the thermal region, but not for the low lying resonances.
- By default MCNP stops its approximated free gas model treatment at 400 kT (~10 eV). This can be easily overridden.
- We collaborated with Ron Dagan from Institut für Reaktorsicherheit (IRS) Forschungszentrum Karlsruhe, Gmbh
 - Dagan et al. derived the resonance scattering kernel and implemented it in NJOY to create a scattering kernel $S(\alpha,\beta)$ for MCNP
- Together with a visiting scholar, *Dr. Tae-Ik Ro*, we performed experiments to validate this model.

²³⁸U Resonance Scattering *Experimental Setup*

• Compare forward to backward scattering from depleted ²³⁸U samples

Inac The Gaerttner Laboratory

Scattering Detection System: Experimental Setup

- Data Acquisition System
 - Main DAQ Computer (HAL) 25m Station
 - PCI Extension Chassis
 - Acqiris AP240 DAQ Boards (2 Channels per Board)
- Data Processing System
 - Data Processing Computer (SAL) Control Room
- Computer Controlled Power Supply
 - Chassis SY 3527 Board A1733N
- Detector Array
 - 8 EJ301 Liquid Scintillation Detectors
 - Detector Stands
- Sample Holder / Changer

mssels

• The RPI developed software can process the TOF data and distinguish neutrons from gammas by pulse shape analysis Data Analysis Computer

(Control Room)

Carbon Experimental Results

Beryllium Experimental Results

8cm

Neutron Spectroscopy Group

Molybdenum Experimental Results

5cm

8cm

Neutron Spectroscopy Group

High Resolution Transmission Detector

- Modular Li-Glass detector will be positioned at 100m flight path
 - Extends our capabilities up to the unresolved resonance region
- Prototype module built and tested.

Lead Slowing Down Spectrometer

- Fission cross section and fission fragment spectroscopy
 - Measured ²³⁵U and ²³⁹Pu.
 - ²⁴⁸Cm is planned.
 - Cathy Romano PhD topic.
- Detectors for (n,α) and (n,p) measurements are under development
 - Compensated Solar Cells
 - Compensated PIPS detectors
 - Compensated GEM amplified detectors (shown on the right)

Working hard with the LANL LSDS

Measurement of (n,α) cross section of Natural Sm

Rensselaer

- The motivation was to demonstrate the ability to measure small cross section of small sample with the LSDS
- Possible contamination from ¹⁴⁹Sm (n,γ) was not corrected yet.
- Data were normalized to the evaluations.
- Best fit with ¹⁴⁷Sm from ENDF/B 6.8 and ¹⁴⁹Sm from ENDF/B-7.0
- The ¹⁴⁷Sm ENDF.B 6.8 evaluation is in better agreement with the recent ORNL (n,α) measurement.

Paul E. Koehler et al. Phys. Rev. C 69,015803,2004

Simultaneous Measurements of Fission Cross Section and Fission Fragment Mass and Energy Distributions of Small Samples

• Use a double gridded fission chamber with the RPI LSDS

e Gaerttner Laboratory

- Use kinematics to compute
 - Fragment angle relative to the normal to the sample
 - Fragment energy distribution
 - Fragment mass distribution

Inac The Gaerttner Laboratory

Results – Fission Fragment Mass distribution $E_n < 0.1 \text{ eV}$

Results – Fission Fragment Energy Distribution E_n<0.1 eV

Results – Measured Fission Cross Section

Fission symmetry in resonance clusters

25

Neutron Spectroscopy Group

Summary

- Total cross section measurements for Zr and Ti from 0.5-20 MeV were completed
- Neutron scattering measurements for Mo and Be from 0.5-20 MeV were completed.
- Measurements of ²³⁸U resonance scattering were completed.
- Measurements of ²³⁹Pu fission fragment mass and energy distributions were completed.
- Measurement of (n,α) for natural samarium was accomplished at the LANL LSDS
- Analysis of Rh, Cd, Eu, ²³⁶U and ¹⁶⁴Dy measurements is in progress
- Results for Mo resonance parameters were submitted for publication.
- Iron filtered beam measurement of Be total cross section was accepted for publication (Nuc Sci Eng).
- New transmission detector for high resolution resonance measurements is under construction.

