Development and Testing of a Revised ENDF/B-VII Capture Cross Section for 113 Cd

Russell D. Mosteller, Los Alamos National Laboratory Robert E. MacFarlane, Los Alamos National Laboratory Said F. Mughabghab, Brookhaven National Laboratory Soon Sam Kim, Idaho National Laboratory*

Presented at the 2007 Winter Meeting of the American Nuclear Society Washington, DC November 11-15, 2007

*Current affiliation: Lawrence Livermore National Laboratory

REVISIONS TO THE THERMAL CAPTURE CROSS SECTION FOR 113 Cd

The ENDF/B-VII.0 thermal capture cross section for ¹¹³Cd was reviewed, with particular attention to the resonance at 0.178 eV

The ENDF/B-VII.0 2200 m/sec capture cross section for ¹¹³Cd is 20615 b, compared to 20726 b for ENDF/B-VI

The ENDF/B-VII.0 value is based on an evaluation by S. Mughabghab that recommends a value of 20615 ± 400 b for the 2200 m/sec capture cross section, consistent with pulsed-neutron measurements

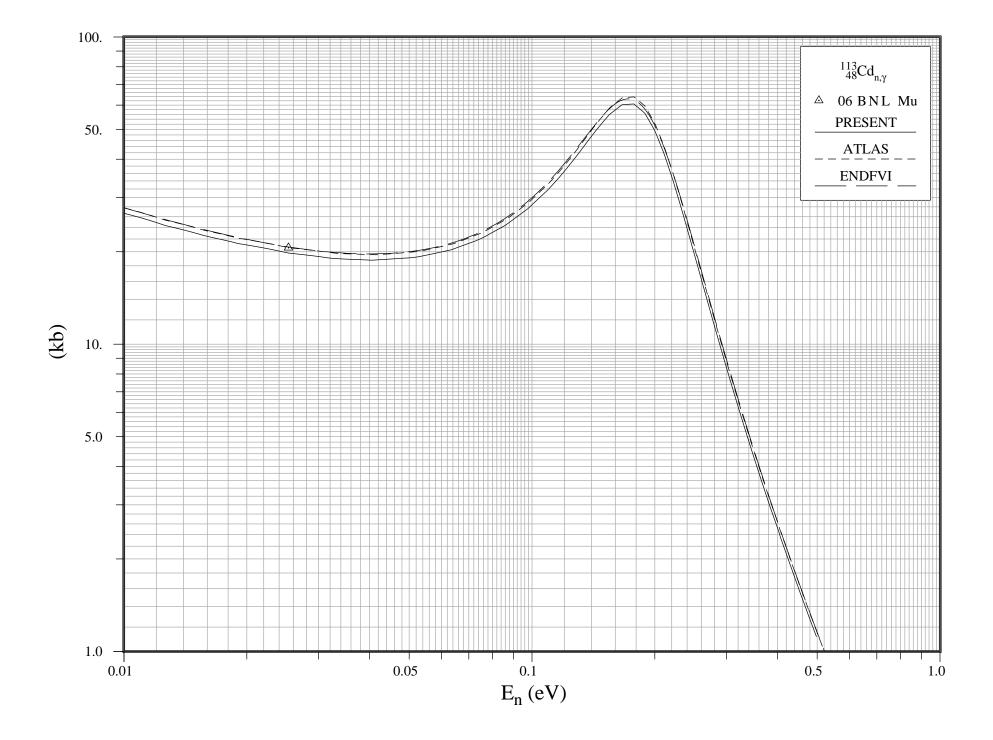
Consistent with more recent measurements, the scattering width of that resonance was decreased from 0.65333 meV to 0.62200 meV

That change reduced the thermal capture cross section from 20751 b to 19800 b and reduced the resonance integral from 391.7 b to 376.6 b

MCNP RESULTS FOR THE BENCHMARKS WITH THE LARGER VESSEL (29.16 cm DIAMETER)

	In-Vessel		Calculated k _{eff}	
	Cd Conc.			ENDF/B-VII.0
Case	(mg/g)	Benchmark k _{eff}	ENDF/B-VII.0	+ Revised 113Cd
9	0	1.0012 ± 0.0020	0.9976 ± 0.0001	0.9976 ± 0.0001
10*	0	1.0012 ± 0.0024	0.9891 ± 0.0002	0.9895 ± 0.0002
11*	1.240	1.0012 ± 0.0022	0.9908 ± 0.0001	0.9943 ± 0.0001
12*	2.250	1.0012 ± 0.0021	0.9924 ± 0.0001	0.9971 ± 0.0001
13*	3.362	1.0012 ± 0.0021	0.9919 ± 0.0001	0.9983 ± 0.0001
14*	4.189	1.0012 ± 0.0020	0.9923 ± 0.0001	0.9993 ± 0.0001
15*	4.577	1.0012 ± 0.0021	0.9941 ± 0.0001	1.0018 ± 0.0001
16*	4.897	1.0012 ± 0.0020	0.9921 ± 0.0001	1.0006 ± 0.0001
17*	5.047	1.0012 ± 0.0021	0.9915 ± 0.0001	0.9994 ± 0.0001
18	5.032	1.0012 ± 0.0020	0.9936 ± 0.0001	1.0014 ± 0.0001
19	5.937	1.0012 ± 0.0020	0.9939 ± 0.0001	1.0023 ± 0.0001
20	6.626	1.0012 ± 0.0019	0.9918 ± 0.0001	1.0007 ± 0.0001

^{*} Reflector contained Cd


$$\sigma < |\Delta k| \le 2\sigma$$

$$|\Delta k| > 2\sigma$$

SUMMARY AND CONCLUSIONS

A new evaluation for the thermal capture cross section of ¹¹³Cd has been developed

The resulting cross section has been shown to produce marked improvement in the agreement between calculated and benchmark values of $k_{\rm eff}$ for a series of thermal benchmarks containing Cd

It is anticipated that the new ¹¹³Cd evaluation will be included in the next interim release of ENDF/B-VII

