

Nuclear Validation Efforts at Livermore

Marie-Anne Descalle, Dave Brown, Jason Pruet

S&T - PhySci/N Division

Lawrence Livermore National Laboratory

We have released the next major ENDL; 61% is translated from ENDF/B-VII.0

Computational Nuclear Physics

- ENDL2008 contains nearly 400 more isotopes than ENDL99, 79% are translated from external libraries.
- 21% is new (see Neil Summers' presentations)

• For the ENDL release, we focused on incident neutrons

Over the last few years we've built a validation basis for our data.

Our testing focuses on deterministic transport with AMTRAN and Monte Carlo transport with Mercury.

S&T - PhySci/N Division

LLNL-PRES-408347

We have developed several simple tests to ensure that our libraries run

Simple sanity checks of processed data

- MCF files using Mercury:
 - Crash test: dynamic simulation of sphere of material with neutron source in middle
 - Gamma production test: count average γ energy leaked out per source neutron
- NDF files using AMTRAN:
 - k_{eff} calculation: ENDL99's ²³⁹Pu as fuel, material of interest as reflector

	endl2008.actinides	ENDFB-VII.0	Difference
	(g MeV/n)	(g MeV/n)	endl/endf
za092232	1.30997	1.32221	0.9%
za092233	0.61724	0.62760	1.7%
za092234	0.68177	0.68190	0.0%
za092235	1.15799	1.18102	1.9%
za092236	0.48062	0.47381	-1.4%
za092237	0.41975	0.42931	2.2%
za092238	0.32453	0.32735	0.9%
za092239	0.35385	0.35976	1.6%
za092240	0.25568	0.24407	-4.8%
za092241	0.19885	0.19776	-0.5%
za093235	0.03820	0.03254	-17.4%
za093236	0.03295	0.02616	-25.9%
za093237	0.61327	0.60487	-1.4%
za093238	0.01676	0.01333	-25.7%
za093239	0.05851	0.05703	-2.6%
za094236	0.01509	0.01090	-38.4%
za094237	0.89765	0.01072	-8274.0%
za094238	0.01784	0.02923	39.0%
za094239	0.84728	0.81222	-4.3%
za094240	0.77121	1.33084	42.1%
za094241	0.02321	0.94248	97.5%
za094242	0.13308	1.10094	87.9%
za094243	0.61741	0.64375	4.1%
za094244	0.01492	0.00429	-247.8%
za094246	0.19694	0.18790	-4.8%

S&T - PhySci/N Division

(n,g) Loop apr-3-08

ENDL2008's performance is comparable to ENDF/B-VII.0 for bare assemblies

- Godiva k_{eff} in excellent agreement with ENDF/B-VII.0, even for ENDL99
- Jezebel k_{eff} has improved dramatically since ENDL99
- ENDL99's elemental Ga evaluation now replaced with new isotopic evaluations
- ²⁴⁰Pu evaluation from JENDL-Actinoid library responsible for $\beta 2 \rightarrow \beta 3$ improvement

Criticality benchmarks ENDL2008 performance in Pu assemblies

LLNL-PRES-408347

Criticality benchmarks ENDL2008 performance in ²³⁵U assemblies

S&T - PhySci/N Division

LLNL-PRES-408347

Criticality benchmarks ENDL2008 performance in ²³³U assemblies

S&T - PhySci/N Division

LLNL-PRES-408347

Criticality benchmarks ENDL2008 & ENDF/B-VII.0 summary

- ENDL2008:
 - Poor $S_{\alpha\beta}$ support means poor performance for thermal assemblies (PST11, HMF19, PMF11, PMF23, PMF24)
 - URR treatment not in production code nor data library yet
- ENDL2008 & ENDF/B-VII.0
 - Ni problem for all libraries (HMF3)
 - W problem for all libraries (PMF5, U233MF4)
 - Be problem for all libraries (HMF17, PMF18)
 - Thor difference is an understood input deck problem

S&T - PhySci/N Division

For some time we've been developing calculations of material worth for validation

- Test change in k_{eff} as move small slug of material radially
- Defined as the change in reactivity (\$) per mole of material

$$\eta = \frac{d\rho}{dm}$$

- In the center: replacement coefficient is sensitive to the absorption cross section
- At the outer surface: replacement coefficient is sensitive to the scattering cross section

Though the k-eigenvalues agree, results for worth are inconsistent (change β_{eff} ?).

```
S&T - PhySci/N Division
```

LLNL-PRES-408347

- A bit of history:
 - In the 1970's, one could not store $dN(E)/d\mu dE'$ data in ENDF
 - For ⁶Li(n,nd) α (and other reactions) this is a problem...
 - Clever folks at LANL developed a work-around:
 - Create fake (n,n') "levels" w/ kinematics rigged to produce correct neutron distribution
 - Denote correct reaction with LR flag
 - Ignore all the other outgoing particles
 - Several evaluations use this format: ⁶Li, ⁷Li, ¹¹B, ^{nat}C, ¹⁴N
- Problems with this approach:
 - Not all particles accounted for: ${}^{6}Li(n,nd)\alpha$ called ${}^{6}Li(n,n')$
 - Format use not documented

We have attempted to translate what the evaluator meant, rather than what's in the files: results need testing

We have developed simple pencil-beam on broomstick test to validate handling of break-up data

Collision Energy ENDF.B-VIr7 ENDL99 ENDF.B-VII.0 ENDF.B-VI r2 Event [MeV] COG Mercury Mercury 5 Elastic (n,n'q)(n,2n'ag) (n,pq)(n,tg) (n,g) nd total # coll. 14 Elastic (n,n'g)(n, 2n'ag)(n,pq)(n,tg) (n,g) nd total # coll.

- ⁶Li, subtle differences in neutron distribution; more dramatic for ⁷Li, ¹⁴N
- # produced deuterons wildly different
- Difficult to trust validity of results w/o proper documentation of format

We recommend re-evaluating ⁶Li, ⁷Li, ¹¹B, ^{nat}C and ¹⁴N

S&T - PhySci/N Division

LLNL-PRES-408347

We have developed Mercury models of LLNL Pulsed sphere experiments published by Goldberg (1990)

- LLNL Pulsed sphere program 1970's-80's
 - Pulsed 14 MeV neutrons; d-t source
 - Measure neutron and γ spectra (TOF)
- Model of experiment including detector efficiency, source correlation
- 17 different materials
 - (25 g/cm² < ρR < 45g/cm²)

S&T - PhySci/N Division

LLNL-PRES-408347

	ENDL2008 Source
H ₂ O	ENDF/B-VII.0
AI	ENDF/B-VII.0
Si	ENDF/B-VII.0
Fe	ENDF/B-VII.0
Cu	ENDF/B-VII.0
W	ENDF/B-VII.0
Au	ENDF/B-VII.0
Pb	ENDF/B-VII.0
²³² Th	ENDF/B-VII.0
²³⁵ U	ENDF/B-VII.0
²³⁸ U	ENDF/B-VII.0
²³⁹ Pu	ENDF/B-VII.0
C_2F_4	ENDL99/ENDF/B-VII.0
С	ENDL99
Ν	ENDL99
Ti	JENDL-3.3
Та	JEFF-3.1

H₂0, AI, Fe and Ti are in fairly good agreement with experiments

Computational Nuclear Physics

A first look at Si and Cu simulations with ENDF/B.VII.0

We underestimate the production of 10-12 MeV neutrons for W, Au, and Pb.

Au, ENDF/B.VII.0

500

300

time-of-flight (ns)

400

experiment

tof_pt_w.inp

600

700

²³²Th, ²³⁸U, and two 1976 experiments for ²³⁵U, ²³⁹Pu

Differences between ENDL2008 and ENDF/B-VII.0 C, teflon, ¹⁴N and Ta

Outgoing gamma spectra as defined by Goldberg et al. (1990)

- Gammas production measured by electron recoil spectra in a NE213 detector
- Mercury cannot transport electrons currently, so compare to Goldberg's 1D simulations
- ENDL2008 performance overall best with exception of ¹⁹F & ¹⁴N targets
 - ¹⁹F targeted for re-evaluation, both ENDL99 & ENDF/B-VII.0 obsolete
 - ¹⁴N from ENDF/B-VII.0 acceptable once break-up data translation resolved

Testing has revealed several data problems; these are our recommendations for tackling them

- Reflected critical assemblies:
 - ⁹Be may need attention
 - Ni, W isotopes need re-evaluation
- Legacy breakup data
 - Short-term: replace LR flagged (n,n') in ⁶Li, ⁷Li, ¹⁴N, ¹¹B with true double differential data
 - Long term: re-evaluate all four isotopes
 - ^{nat}C: re-evaluate -- this is important material that should have isotopic evaluations and true double differential data
- Diagnose poor performance in pulsed sphere tests:
 - Gamma flux test: ¹⁹F, ¹⁴N
- Need better $S_{\alpha\beta}$ support in ENDL libraries, LLNL transport codes

We must continue developing new tests; this is best way to uncover existing problems

S&T - PhySci/N Division

New tests to be added this year

- More criticality tests: Red Cullen's fantastic TART test suite
- Fusion Shielding Benchmarks
 - Oktavian spheres
 - FNS
- LANL Traverse measurements

LLNL-PRES-408347