The Nickel Isotopes - Status of Theory Then and Now

KARLSRUHER NUKLIDKARTE
 7．Auflage 2006，
 revised printing 2007

CHART OF THE NUCLIDES， $7^{\text {th }}$ Edition 2006 ／CARTE DES NUCLEIDES， $7^{\text {eme }}$ Edition 2006
CARTA DE NUCLEIDOS， $7^{\text {a }}$ Edición 2006 ／Таблица радионуклидов，7－е издание
核素图，第7版
J．Magill＇，G．Pfennig²，J．Galy
European Commission－Joint Research Centre－Institute for Transuranium Elements
P．O．Box 2340， 76125 Karlsruhe，Germany
formerly Forschungszentrum Karlsruhe in der Helmholtz－Gemeinschaft
P．O．Box 3640， 76021 Karisruhe，Germany
© European Communities 2006－2007
Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission
is responsible for the use which might be made of the following information．
ISBN 92－79－02175－3 © European Communities， 2006 ／Catalogue number：LC－NA－22276－EN－C

$\begin{gathered} \hline \mathrm{Li} \\ 6.941 \end{gathered}$	$\begin{gathered} \mathrm{Li} 4 \\ 5.0 \mathrm{MeV} \\ 91 \cdot 10^{-24} \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{Li} 5 \\ 1.23 \mathrm{MeV} \\ 370 \cdot 10^{-246} \end{gathered}$	Li 6 7.59 0.039 0.040	$\begin{gathered} \mathrm{Li} 7 \\ 92.41 \\ \\ \hline 0.045 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{Li} 10 \\ & 230 \mathrm{keV} \\ & 2.0 \cdot 10^{-21} \mathrm{~s} \\ & \mathrm{n} \\ & \hline \end{aligned}$	
	$\begin{array}{\|c\|} \hline \mathrm{He} \mathrm{3} \\ 0.000134 \\ \\ 00.0005 \\ \hline 0.05350 \\ \hline \end{array}$	$\begin{gathered} \mathrm{He} 4 \\ 99.999866 \end{gathered}$	$\begin{gathered} \mathrm{He} \mathrm{5} \\ 648 \mathrm{keV} \\ 700 \cdot 10^{-24} \mathrm{~s} \end{gathered}$		$\begin{gathered} \mathrm{He} 7 \\ 159 \mathrm{keV} \\ 2.9 \cdot 10^{-21} \mathrm{~s} \\ n \end{gathered}$		$\begin{gathered} \mathrm{He} 9 \\ 65 \mathrm{keV} \\ 7 \cdot 10^{-21} \mathrm{~s} \\ \mathrm{n} \end{gathered}$	$\begin{aligned} & \mathrm{He} \mathrm{10} \\ & 0.17 \mathrm{MeV} \\ & 2.7 \cdot 10^{-21} \mathrm{~s} \\ & 2 \mathrm{n} \end{aligned}$

Chart of Nuclides
 NNDC
 Click on a nucleus for information

B．Alex Brown，USNDP，BNL，Nov 6， 2008

$\begin{gathered} \mathrm{Ni} 48 \\ \sim 2 \mathrm{~ms} \text { ? } \end{gathered}$	$\begin{aligned} & \mathrm{Ni} 49 \\ & 13 \mathrm{~ms} \end{aligned}$	Ni 50 12 ms	$\begin{gathered} \mathrm{Ni} 51 \\ >200 \mathrm{~ns} \end{gathered}$	Ni 52 38 ms	Ni 53 45 ms	$\begin{gathered} \mathrm{Ni} 54 \\ 104 \mathrm{~ms} \end{gathered}$	$\begin{gathered} \mathrm{Ni} 55 \\ 209 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & \mathrm{Ni} 56 \\ & 6.075 \mathrm{~d} \end{aligned}$
2p 1.35?	β^{+} βp 3.7	β^{+} βp	β^{+}?		${ }^{\beta+}{ }^{+}{ }^{+}$	$\begin{aligned} & \beta^{+} \\ & y 937 \\ & g^{9} \\ & \hline \end{aligned}$	$\begin{aligned} & \beta^{+}+7.7 \ldots ; \\ & y(2919 ; 2976 ; \\ & 3303) \end{aligned}$	$\begin{aligned} & \text { c; no } \beta^{+} \\ & \gamma 118 ; 812 ; 750 ; \\ & 480 ; 270 \ldots \end{aligned}$

$\begin{aligned} & \mathrm{Ni} 56 \\ & 6.075 \mathrm{~d} \end{aligned}$	$\begin{aligned} & \mathrm{Ni} 57 \\ & 36.0 \mathrm{~h} \end{aligned}$	$\begin{gathered} \mathrm{Ni} 58 \\ 68.0769 \end{gathered}$	$\begin{gathered} \mathrm{Ni} 59 \\ 7.5 \cdot 10^{4} \mathrm{a} \end{gathered}$	$\begin{gathered} \mathrm{Ni} 60 \\ 26.2231 \end{gathered}$	$\begin{array}{r} \text { Ni } 61 \\ 1.1399 \end{array}$	$\begin{aligned} & \mathrm{Ni} 62 \\ & 3.6345 \end{aligned}$	Ni 63 100 a	Ni 64 0.9256	$\begin{aligned} & \mathrm{Ni} 65 \\ & 2.52 \mathrm{~h} \end{aligned}$	Ni 66 54.6 h	$\begin{gathered} \mathrm{Ni} 67 \\ 21 \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{Ni} 68 \\ 29 \mathrm{~s} \end{gathered}$
$\begin{aligned} & \text { e: no } \beta^{+} \\ & \text {1158; } 812 ; 750 ; \\ & 480 ; 270 \ldots . . \end{aligned}$	$\begin{aligned} & \varepsilon+{ }_{c} \\ & \beta+0.8 \ldots 192 ; \\ & 11378 ; 1920 ; \\ & 127 . . \end{aligned}$		$\begin{aligned} & \epsilon ; \beta^{+}, \ldots \\ & \text { no } \gamma ; \sigma 77.7 \\ & \sigma_{n, a} 14 ; \sigma_{n, p} 2 \\ & \sigma_{a b s} 92 \end{aligned}$	- 2.9	$\begin{aligned} & \sigma_{\sigma_{n, 0}}^{2.5} 0.00003 \\ & \hline \end{aligned}$	015	$\begin{aligned} & \beta^{-} 0.07 \\ & \text { no } \gamma \\ & \text { 0 } 20 \\ & \hline \end{aligned}$	01.6	$\begin{aligned} & \beta-2.1 \ldots \\ & \gamma 1482 ; 1115 ; \\ & 366 \ldots \\ & \hline \alpha 22 \\ & \hline \end{aligned}$	$\begin{aligned} & \beta^{-} 0.2 \\ & \text { no } \gamma \\ & \hline \end{aligned}$	$\begin{aligned} & \beta_{3}^{-3.8 \ldots . .} \\ & \gamma(1937 ; 1115 ; \\ & 822 \ldots . . . \end{aligned}$	$\begin{aligned} & \beta^{-} \\ & y 758 ; 84 \\ & g \\ & \hline \end{aligned}$

$\begin{gathered} \mathrm{Ni} 68 \\ 29 \mathrm{~s} \end{gathered}$	$\begin{aligned} & \mathrm{Ni} 69 \\ & 11.4 \mathrm{~s} \end{aligned}$	$\begin{gathered} \mathrm{Ni} 70 \\ 6.0 \mathrm{~s} \end{gathered}$	$\begin{aligned} & \mathrm{Ni} 71 \\ & 2.56 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{Ni} 72 \\ & 1.57 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{Ni} 73 \\ & 0.84 \mathrm{~s} \end{aligned}$	$\begin{gathered} \mathrm{Ni} 74 \\ 0.9 \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{Ni} 75 \\ 344 \mathrm{~ms} \end{gathered}$	$\begin{gathered} \mathrm{Ni} 76 \\ 238 \mathrm{~ms} \end{gathered}$	$\begin{gathered} \mathrm{Ni} 77 \\ 128 \mathrm{~ms} \end{gathered}$	$\begin{gathered} \mathrm{Ni} 78 \\ 110 \mathrm{~ms} \end{gathered}$
	$\begin{aligned} & \beta_{1}^{-} \\ & \text {1871: } 680 ; \\ & 1213 ; 1483 . . \end{aligned}$	$\begin{aligned} & \begin{array}{l} \beta^{-3.3 .3 . .8} \\ y 1036 ; 78 . . \\ m_{2} \end{array} \\ & \hline \end{aligned}$	${ }^{\beta-8}{ }^{-}$	${ }_{\text {¢ }}{ }^{-}$	${ }^{\beta-}{ }^{\beta} 166 ; 1010$	$\begin{aligned} & \beta^{-} \\ & \gamma 166^{\circ} ; 694 \\ & \beta n \\ & \hline \end{aligned}$	β^{-}	B^{-}	${ }^{-}$	β^{-}

B. Alex Brown, USNDP, BNL, Nov 6, 2008

B. Alex Brown, USNDP, BNL, Nov 6, 2008

B. Alex Brown, USNDP, BNL, Nov 6, 2008

NSCL
B. Alex Brown, USNDP, BNL, Nov 6, 2008

CHARGE-DEPENDENT TWO-BODY INTERACTIONS
 DEDUCED FROM DISPLACEMENT ENERGIES IN THE $1_{f_{z}}$ SHELL $^{\boldsymbol{~}}$

B. A. BROWN ${ }^{\dagger 1}$

Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824
and
R. SHERR

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540

About 60 energies of isobaric analogue states for $A=41-55$ measured to few keV accuracy
$\left(\mathrm{f}_{7 / 2}\right)^{\mathrm{n}}$ models with 8 parameters fit all of them to 12 keV rms

Di-proton decay

Q-value results for ${ }^{48} \mathbf{N i}$

$\mathrm{Q}(\exp)=1.35$ (2) MeV Dossat et al. 2006 (one event)
$\mathrm{Q}(\mathrm{th})=1.36$ (13) Brown 1991 (IMME)
3.1 (6) Audi-Wapstra extrapolation 2003
0.0-2.0 Nazarewicz et al 1996 (mean-field)

Di－proton decay＝horses to hay
What is the cluster dynamics of di－proton decay？ ${ }^{48} \mathrm{Ni}$ di－proton vs ${ }^{48} \mathrm{Ca}(p, t){ }^{46} \mathrm{Ca}$ ？

これからはいいつも塯同でれ

B．Alex Brown，USNDP，BNL，Nov 6， 2008

Results for di-proton decay

Nucleus	\exp	$\exp (\mathrm{a})$	theory (b)	$\mathrm{S}(\mathrm{c})$
	$\mathrm{Q}_{2 p}$	$\mathrm{~T}_{1 / 2}$	$\mathrm{~T}_{1 / 2}$	
	(MeV)	(ms)	(ms)	
${ }^{45} \mathrm{Fe}$	$1.151(15)$	$2.4-3.9$	$14-22(\mathrm{~d})$	0.272
${ }^{48} \mathrm{Ni}$	$1.35(2)$	<21	$4-11$	0.188
${ }^{54} \mathrm{Zn}$	$1.48(2)$	$2.7-5.9$	$3-8$	0.313

(a) B. Blank, J. Giovinazzao, M. Pfutzner.....
(b) B. A. Brown and F. C. Barker, Phys. Rev. C67, 041304(R) (2003). includes correlations (pairing) - three-body Coulomb asymptotics in R matrix with pp resonance as an intermediate state
(c) Two-particle spectroscopic factor

Grigorenko and Zukov, Phys. Rev. C, 68, 054005 (2003).
single-particle model (no correlations)
but includes full three-body decay with Coulomb

Observation of ${ }^{54} \mathrm{Ni}$: Cross-Conjugate Symmetry in $f_{7 / 2}$ Mirror Energy Differences

A. Gadea, ${ }^{1}$ S. M. Lenzi, ${ }^{2}$ S. Lunardi, ${ }^{2}$ N. Mărginean, ${ }^{1,3}$ A.P. Zuker, ${ }^{4}$ G. de Angelis, ${ }^{1}$ M. Axiotis, ${ }^{1}$ T. Martínez, ${ }^{1}$
D. R. Napoli, ${ }^{1}$ E. Farnea, ${ }^{2}$ R. Menegazzo, ${ }^{2}$ P. Pavan, ${ }^{2}$ C. A. Ur, ${ }^{2,3}$ D. Bazzacco, ${ }^{2}$ R. Venturelli, ${ }^{2}$ P. Kleinheinz, ${ }^{5}$ P. Bednarczyk, ${ }^{4,6}$ D. Curien, ${ }^{4}$ O. Dorvaux, ${ }^{4}$ J. Nyberg, ${ }^{7}$ H. Grawe, ${ }^{8}$ M. Górska, ${ }^{8}$ M. Palacz, ${ }^{9}$ K. Lagergren, ${ }^{10}$
L. Milechina, ${ }^{10}$ J. Ekman, ${ }^{11}$ D. Rudolphh ${ }^{12}$ C. Andreoiu, ${ }^{12}$ M. A. Bentley,${ }^{13}$ W. Gelletly ${ }^{14}$ B. Rubio, ${ }^{15}$ A. Algora, ${ }^{15}$ E. Nacher. ${ }^{15}$ L. Caballero. ${ }^{15}$ M. Trotta. ${ }^{16}$ and M. Moszvński ${ }^{17}$

n, USNDP, BNL, Nov 6, 2008

B. Alex Brown, USNDP, BNL, Nov 6, 2008

N3LO V-lowk 6hw $2^{\text {nd }}$ order - "full" pf shell (Angelo Signoracci)

N3LO V-lowk 6hw ${ }^{\text {nd }}$ order - "full" pf shell (Angelo Signoracci)

N3LO V-lowk 6hw ${ }^{\text {nd }}$ order - "full" pf shell (Angelo Signoracci)

	$\mathrm{N}^{3} \mathrm{LO}^{\mathrm{a}}$		Experiment $^{\mathrm{b}}$
		${ }^{1} S_{0}$	
$a_{p p}^{C}$	-7.8188		-7.8196 ± 0.0026
$r_{p p}^{C}$	2.795		2.790 ± 0.014
$a_{p p}^{N}$	-17.083		
$r_{p p}^{N}$	2.876		
$a_{n n}^{N}$	-18.900		-18.9 ± 0.4
$r_{n n}^{N}$	2.838		2.75 ± 0.11
$a_{n p}$	-23.732		-23.740 ± 0.020
$r_{n p}$	2.725		2.77 ± 0.05
a_{t}	5.417		
r_{t}	1.752		

From n+d
-18.7(6) PRL 83, 3788 (1999)
-16.3(40 PRL 85, 1190 (2000)

Bertram Blank - isospin forbidden proton decay

${ }^{52} \mathrm{Co} 0^{+} \mathrm{T}=4$ to ${ }^{51} \mathrm{Fe} 5 / 2^{-} \mathrm{T}=1 / 2$

PHYSICAL REVIEW C 77, 025501 (2008)

Improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi β decay
I. S. Towner ${ }^{*}$ and J. C. Hardy

Cyclotron Institute, Texas A\&M University, College Station, Texas 77843, USA

A tour of the sd shell on the web

23Home		- Bookmarks										
K											38, 0	39, 1/2
Ar										36,0	37, 1/2	38, 1
Cl									34, 0	35, 1/2	36, 1	37,3/2
S								32, 0	33, 1/2	34, 1	35,3/2	36,2
P							30, 0	31, 1/2	32, 1	33,3/2	34, 2	35,5/2
Si						28,0	29, 1/2	30, 1	31,3/2	32,2	33,5/2	34,3
A1					26, 0	27, 1/2	28, 1	29,3/2	30,2	31, 5/2	32, 3	33,7/2
Mg				24, 0	25, 1/2		27,3/2	28,2	29,5/2	30,3	31,7/2	32, 4
Na			22,0	23, 1/2	24, 1	25,3/2		27, 5/2	28,3	29,7/2	30, 4	31,9/2
Ne		20, 0	21, 1/2	22, 1	23,3/2	24, 2	25,5/2		27,7/2	28,4	29,9/2	30, 5
F	18,0	19, 1/2	20, 1	21, 3/2	22,2	23,5/2	24,3	25,7/2		27,9/2	28, 5	29,11/2
O	17, 1/2	18, 1	19,3/2	20,2	21,5/2	22, 3	23,7/2	24, 4	25,9/2	20, 5	27, 11/2	28,6
	9	10	11	12	13	14	15	16	17	18	19	20

B. Alex Brown, USNDP, BNL, Nov 6, 2008

Positive parity states for ${ }^{26} \mathrm{Al}$

B. Alex Brown, USNDP, BNL, Nov 6, 2008

Positive parity states for ${ }^{26} \mathbf{M g}$

Positive parity states for ${ }^{\mathbf{2 6}} \mathbf{N a}$

B. Alex Brown, USNDP, BNL, Nov 6, 2008

Positive parity states for ${ }^{26} \mathbf{N e}$

Positive parity states for ${ }^{26} \mathbf{F}$

B. Alex Brown, USNDP, BNL, Nov 6, 2008

Positive parity states for ${ }^{26} \mathrm{O}$

How to count basis dimensions

- Protons and neutrons - all of those allowed by the triangle conditions $\left[\left(\mathrm{J}_{\mathrm{p}}\right)\right] \times\left[\left(\mathrm{J}_{\mathrm{n}}\right)\right] \mathrm{J}_{\mathrm{pn}} \quad \mathrm{D}_{\mathrm{pn}}=\mathrm{D}_{\mathrm{p}} \mathrm{D}_{\mathrm{n}}$
- Number of states for a given M-value - the sum of the J dimensions from $\mathrm{J}_{\text {max }}$ down to $\mathrm{J}=\mathrm{M}$
- J-scheme - basis has good J (or JT)
- M-scheme - basis does not have good J - only M is fixed but the eigenstates will have good J since H is rotationally invariant.

Example for ${ }^{48} \mathrm{Ca}$ in the pf shell

B. Alex Brown, USNDP, BNL, Nov 6, 2008

Example for ${ }^{56} \mathrm{Ni}$ in the pf shell

B. Alex Brown, USNDP, BNL, Nov 6, 2008

Example for ${ }^{56} \mathrm{Ni}$ in the pf shell

B. Alex Brown, USNDP, BNL, Nov 6, 2008

Example for ${ }^{56} \mathrm{Ni}$ in the pf shell

B. Alex Brown, USNDP, BNL, Nov 6, 2008

Codes

- M-scheme (matrix not stored) ($\sim 10^{10} \mathrm{M}$-states)
- Antoine (Caurier)

```
available on the web
```

- Redstick (Ormand and Johnson)
- CMUShell (Horoi)
- Mshell (Mizuzaki)
- MFDn (Vary et al)
- JT-projected M-scheme (matrix stored) ($\sim 10^{5}$ JT-states)
- Oxbash (Brown and Rae) (now replaced by NuShell@MSU)
- NuShell (Rae)
- NuShell@MSU (Brown and Rae) (NuShell with Oxbash style input and output)
- J-scheme (matrix not stored) ($\sim 10^{8} \mathrm{~J}$-states)
- Nathan (Caurier)
- EICODE (Toivanen)
- NuShellx (Rae)
- NuShellx@MSU (Brown and Rae) (NuShellx with Oxbash style input and output)

Bill Rae (Garsington) has made big advances
Oxbash -> Nushell -> Nushellx
Nushellx uses the [Jp Jn] J coupling to eliminate storage of the matrix.
Similar to Nathan (Caurier et al) and Eicode (Toivanen) but faster.
NuShellx@MSU uses these codes as a core for nuclear structure applications.

	Nuclear Shell Model Codes Home of NuShell, NuShellX and SunShell
Home	Home Page of NuShell, NuShellX and SunShell.
Amorius	NuShell is prossibly one of the easiest shell model codes to use!

NuShellX - NuShell's Big Brother
The faster, easy choice for large scale shell model calculations !

Effective interactions - what are the two-body matrix elements?
For sd shell USD, USDA, USDB interactions obtained from a fit to data use singular-value-decomposition method to obtain values for 20-30 of the most important linear combinations of TBME from about 600 energies

For pf same procedure for about 600 energies M. Honma, T. Otsuka, B. A. Brown and T. Mizusaki, Phys. Rev. C65, 061301 (2002) - GPFX1, GPFX1A

For heavier nuclei this method becomes unfeasible - we need better methods for understanding the nuclear medium and model space dependence of the NN and NNN interactions (tomorrow) talk at Stony Brook on ${ }^{132} \mathrm{Sn}$ and ${ }^{208} \mathrm{~Pb}$ regions

Full pf space for ${ }^{56} \mathrm{Ni}$ with GXPF1A Hamiltonian (order of one day computing time)

M. Horoi, B. A. Brown, T. Otsuka, M. Honma and T. Mizusaki, Phys. Rev. C 73, 061305(R) (2006).

B. Alex Brown, USNDP, BNL, Nov 6, 2008

Pure configurations

Requires an effective shell gap 0.9 MeV smaller than full fp
B. Alex Brown, USNDP, BNL, Nov 6, 2008

```
\({ }^{58} \mathrm{Ni}(\mathrm{p}, \mathrm{t}){ }^{56} \mathrm{Ni}\)
```

PHYSICAL REVIEW C
VOLUME 10 , NUMBER 5
NOVEMBER 1974

Levels of ${ }^{56} \mathrm{Ni}^{\dagger}$

H. Nann* and W. Benenson

Cyclotron Laboratory and Department of Physics, Michigan State University, East Lansing, Michigan 48824
(Received 5 August 1974)
The ${ }^{58} \mathrm{Ni}(p, t){ }^{56} \mathrm{Ni}$ reaction was studied at 40 and 45 MeV beam energy. An energy resolution of $10-25 \mathrm{keV}$ permitted observation of 60 levels with excitation energy up to 10.5 MeV . Spin and parity are assigned to levels which were excited with characteristic angular distributions. These include 0^{+} states at $3.95,5.00,6.44,7.91,9.92,9.99$, and 10.02 MeV .

60 levels 10 keV resolution

B. Alex Brown, USNDP, BNL, Nov 6, 2008

B. Alex Brown, USNDP, BNL, Nov 6, 2008

```
58}\textrm{Ni}(\textrm{p,t})\mp@subsup{}{}{56}\textrm{Ni
```

$\begin{array}{l}\text { Pairing vibrations expect three } 0^{+} \text {levels with } \mathrm{T}=0,1,2 \\ \text { strength 2:3:1 and spacing that goes as } \mathrm{T}(\mathrm{T}+1)\end{array}$

${ }^{13}$ A. Bohr, in International Symposium on Nuclear Structure, Dubna, 1968 (IAEA, Vienna, 1968), p. 179.
${ }^{14}$ O. Nathan, in International Symposium on Nuclear Structure, Dubna, 1968 (see Ref. 13), p. 191.

${ }^{58} \mathrm{Ni}(\mathrm{p}, \mathrm{t}){ }^{56} \mathrm{Ni}$

Relative strength

For 0^{+}states in ${ }^{56} \mathrm{Ni}$

B. Alex Brown, USNDP, BNL, Nov 6, 2008

Reinvestigation of ${ }^{56} \mathrm{Ni}$ decay

Bhaskar Sur, Eric B. Norman, K. T. Lesko, Edgardo Browne, and Ruth-Mary Larimer
Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720

STELLAR WEAK INTERACTION RATES ${ }^{1}$ FOR INTERMEDIATE-MASS NUCLEI. II. $A=21$ TO $A=60$

George M. Fuller ${ }^{2}$ and William A. Fowler
W. K. Kellogg Radiation Laboratory, California Institute of Technology

AND
Michael J. Newman
Applied Theoretical Physics Division, Los Alamos National Laboratory, University of California, Los Alamos
Received 1981 June 12; accepted 1981 August 3

The Astrophysical Journal, 252:715-740, 1982 January 15
© 1982. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ELECTRON CAPTURE AND β-DECAY IN PRESUPERNOVA STARS

M. B. Aufderheide

Physics Department, State University of New York at Stony Brook; and Department of Physics, Brookhaven National Laboratory
G. E. Brown, T. T. S. Kuo, and D. B. Stout

Physics Department, State University of New York at Stony Brook
AND
P. Vogel

Physics Department, California Institute of Technology
Received 1989 September 25 ; accepted 1990 April 2
The Astrophysical Journal, 362:241-250, 1990 ।

RATE TABLES FOR THE WEAK PROCESSES OF $p f$-SHELL NUCLEI IN STELLAR ENVIRONMENTS

K. LANGANKE ${ }^{1}$ and G. MARTÍNEZ-PINEDO ${ }^{2}$

Institut for Fysik og Astronomi, Århus Universitet, DK-8000 Århus C, Denmark
Atomic Data and Nuclear Data Tables 79, 1-46 (2001)

${ }^{62} \mathrm{Fe}$ to ${ }^{62} \mathrm{Co}$ model from Aufderheide et al. 1990

B. Alex Brown, USNDP, BNL, Nov 6, 2008

m, USNDP, BNL, Nov 6, 2008

78Ni: beta-decay (Lisetsky)

B. Alex Brown, USNDP, BNL, Nov 6, 2008

Ni: Beta-decay results (Lisetsky)

P_{n} values for Ni isotopes

P. T. Hosmer et al., PRL 94, 112501 (2005)
B. Alex Brown, USNDP, BNL, Nov 6, 2008

Correlations between magnetic moments and beta decay

S. M. Perez ${ }^{1,2}$, W. A. Richter ${ }^{3}$, B. A. Brown ${ }^{4}$ and M. Horoi ${ }^{5}$
${ }^{1}$ Department of Physics, University of Cape Town, Private Bag, Rondebosch 7700, South Africa
${ }^{2}$ iThemba LABS, P. O. Box 722, Somerset West 7129, South Africa
${ }^{3}$ Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
${ }^{4}$ Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA and
${ }^{5}$ Department of Physics, Central Michigan University, Mount Pleasant, MI 48859, USA

New Look at Magnetic Moments and Beta Decays of Mirror Nuclei

B. Buck

Department of Theoretical Physics, Oxford University, Oxford 0X1 3RH, United Kingdom and
S. M. Perez

Faded seniority isomerism near ${ }^{78} \mathrm{Ni}$

A. Lisetskiy et al., PRC 70, 044312 (2004)
B. Alex Brown, USNDP, BNL, Nov 6, 2008

