The Nickel Isotopes – Status of Theory -Then and Now

Alex Brown – Michigan State University

KARLSRUHER NUKLIDKARTE 7. Auflage 2006, revised printing 2007

CHART OF THE NUCLIDES, 7th Edition 2006 / CARTE DES NUCLEIDES, 7the Edition 2006 CARTA DE NUCLEIDOS, 7ª Edición 2006 / Таблица радионуклидов, 7-е издание 核素图,第7版

J. Magill¹, G. Pfennig², J. Galy¹

¹ European Commission – Joint Research Centre – Institute for Transuranium Elements P.O. Box 2340, 76125 Karlsruhe, Germany

² formerly Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft P.O. Box 3640, 76021 Karlsruhe, Germany

© European Communities 2006-2007

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information. ISBN 92-79-02175-3 © European Communities, 2006 / Catalogue number: LC-NA-22276-EN-C

Li 6.941 σ _{abs} 71	Li 4 5.0 MeV 91 - 10 ⁻²⁴ s	Li 5 1.23 MeV 370 · 10 ⁻²⁴ s	Li 6 7.59 or 0.039 or, a 940	Li 7 92.41 90.045	Li 8 840.3 ms β 12.5 β2α ~ 1.6	Li 9 178.3 ms β ⁻ 13.6 βn 0.7 βα	Li 10 230 keV 2.0 · 10 ⁻²¹ s	Li 11 8.5 ms β -18.5; 20.4 γ 3368°; 320 βn; β2n; β3n; βα; βt; βd	
He 4.002602 σ _{abs} <0.05	He 3 0.000134 or 0.00005 or 0.9 5330	He 4 99.999866	He 5 648 keV 700 · 10 ⁻²⁴ s	He 6 806.7 ms ^{β⁻ 3.5}	He 7 159 keV 2.9 · 10 ⁻²¹ s	He 8 119 ms ^{β⁻ 9.7} γ 981; 478* βn; βt	He 9 65 keV 7 · 10 ⁻²¹ s	He 10 0.17 MeV 2.7 · 10 ⁻²¹ s 2n	0.75E-

Ni 48	Ni 49	Ni 50	Ni 51	Ni 52	Ni 53	Ni 54	Ni 55	Ni 56
~2 ms ?	13 ms	12 ms	>200 ns	38 ms	45 ms	104 ms	209 ms	6.075 d
2p 1.35 ?	β ⁺ Вр 3.7	β ⁺ βр	β+ ?	β ⁺ βp 1.34; 1.06	β ⁺ βp 1 .90	β+ γ937 9	β ⁺ 7.7 γ (2919; 2976; 3303)	ε; no β ⁺ γ 158; 812; 750; 480; 270

Ni 56	Ni 57	Ni 58	Ni 59	Ni 60	Ni 61	Ni 62	Ni 63	Ni 64	Ni 65	Ni 66	Ni 67	Ni 68
6.075 d	36.0 h	68.0769	7.5 · 10 ⁴ a	26.2231	1.1399	3.6345	100 a	0.9256	2.52 h	54.6 h	21 s	29 s
ε; no β ⁺ γ 158; 812; 750; 480; 270	ε β ⁺ 0.8 γ 1378; 1920; 127	σ 4.6 σ _{n, α} <0.00003	ε; β ⁺ no γ ; σ 77.7 σ _n , α 14; σ _n , _p 2 σ _{abs} 92	σ2.9	σ2.5 σ _{n, α} 0.00003	er 15	β ⁻ 0.07 no γ σ 20	σ1.6	β 2.1 γ 1482; 1115; 366 σ 22	β 0.2 no γ	β 3.8 γ (1937; 1115; 822)	β γ 758; 84 9

	the second se									
Ni 68 29 s	Ni 69 11.4 s	Ni 70 6.0 s	Ni 71 2.56 s	Ni 72 1.57 s	Ni 73 0.84 s	Ni 74 0.9 s	Ni 75 344 ms	Ni 76 238 ms	Ni 77 128 ms	Ni 78 110 ms
β γ 758; 84 9	β γ 1871; 680; 1213; 1483	β 3.3 γ 1036; 78 m ₂	β γ534; 2016	β γ 376; 94	β γ 166; 1010	β γ 166*; 694 βn	β-	β-	β-	β-

Isotope Science Facility at Michigan State University

Upgrade of the NSCL rare isotope research capabilities

Nuclear Physics A322 (1979) 61-91; C North-Holland Publishing Co., Amsterdam Not to be reproduced by photoprint or microfilm without written permission from the publisher

CHARGE-DEPENDENT TWO-BODY INTERACTIONS DEDUCED FROM DISPLACEMENT ENERGIES IN THE 1f₄ SHELL[†]

B. A. BROWN ^{1†}

Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824

and

R. SHERR

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540

S NSCL About 60 energies of isobaric analogue states for A=41-55 measured to few keV accuracy

 $(f_{7/2})^n$ models with 8 parameters fit all of them to 12 keV rms

S NSCL Di-proton decay

Q-value results for ⁴⁸Ni

Q(exp) = 1.35 (2) MeV Dossat et al. 2006 (one event)

Q(th) = 1.36 (13) Brown 1991 (IMME) 3.1 (6) Audi-Wapstra extrapolation 2003 0.0-2.0 Nazarewicz et al 1996 (mean-field)

Di-proton decay = horses to hay What is the cluster dynamics of di-proton decay? ⁴⁸Ni di-proton vs ⁴⁸Ca(p,t)⁴⁶Ca ?

Results for di-proton decay

Nucleus	exp	exp (a)	theory (b)	S (c)
	Q_{2p}	$T_{1/2}$	$T_{1/2}$	
	(MeV)	(ms)	(ms)	
45 Fe	1.151(15)	2.4 - 3.9	14 - 22 (d)	0.272
⁴⁸ Ni	1.35(2)	<21	4 - 11	0.188
⁵⁴ Zn	1.48(2)	2.7 - 5.9	3 - 8	0.313

- (a) B. Blank, J. Giovinazzao, M. Pfutzner.....
- (b) B. A. Brown and F. C. Barker, Phys. Rev. C67, 041304(R) (2003). includes correlations (pairing) – three-body Coulomb asymptotics in R matrix with pp resonance as an intermediate state
- (c) Two-particle spectroscopic factor

Grigorenko and Zukov, Phys. Rev. C, 68, 054005 (2003). single-particle model (no correlations) but includes full three-body decay with Coulomb

Observation of ⁵⁴Ni: Cross-Conjugate Symmetry in $f_{7/2}$ Mirror Energy Differences

A. Gadea,¹ S. M. Lenzi,² S. Lunardi,² N. Mărginean,^{1,3} A. P. Zuker,⁴ G. de Angelis,¹ M. Axiotis,¹ T. Martínez,¹ D. R. Napoli,¹ E. Farnea,² R. Menegazzo,² P. Pavan,² C. A. Ur,^{2,3} D. Bazzacco,² R. Venturelli,² P. Kleinheinz,⁵ P. Bednarczyk,^{4,6} D. Curien,⁴ O. Dorvaux,⁴ J. Nyberg,⁷ H. Grawe,⁸ M. Górska,⁸ M. Palacz,⁹ K. Lagergren,¹⁰ L. Milechina,¹⁰ J. Ekman,¹¹ D. Rudolph,¹² C. Andreoiu,¹² M. A. Bentley,¹³ W. Gelletly,¹⁴ B. Rubio,¹⁵ A. Algora,¹⁵ E. Nacher,¹⁵ L. Caballero,¹⁵ M. Trotta,¹⁶ and M. Moszvński¹⁷

N3LO V-lowk 6hw 2nd order – "full" pf shell (Angelo Signoracci)

N3LO V-lowk 6hw 2nd order – "full" pf shell (Angelo Signoracci)

N3LO V-lowk 6hw 2nd order – "full" pf shell (Angelo Signoracci)

	N ³ LO ^a	Experiment ^b
		${}^{1}S_{0}$
a_{pp}^{C}	-7.8188	-7.8196 ± 0.0026
r_{pp}^{C}	2.795	2.790 ± 0.014
a_{pp}^{N}	-17.083	
r_{nn}^{N}	2.876	
a_{nn}^{N}	-18.900	-18.9 ± 0.4
r_{nn}^N	2.838	2.75 ± 0.11
a_{np}	-23.732	-23.740 ± 0.020
r_{np}	2.725	2.77 ± 0.05
1		${}^{3}S_{1}$
a_t	5.417	5.419 ± 0.007
r_t	1.752	1.753 ± 0.008

From n+d

-18.7(6) PRL 83, 3788 (1999) -16.3(40 PRL 85, 1190 (2000)

Bertram Blank – isospin forbidden proton decay

 52 Co 0⁺ T=4 to 51 Fe 5/2⁻ T=1/2

PHYSICAL REVIEW C 77, 025501 (2008)

Improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi β decay

I. S. Towner^{*} and J. C. Hardy Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

 $|V_{\rm ud}|^2 + |V_{\rm us}|^2 + |V_{\rm ub}|^2 = 1.0000 \pm 0.0011.$

A tour of the sd shell on the web

1	Home	Bo	okmark	s								
К										-	<u>38, U</u>	<u>39, 172</u>
Ar										<u>36, 0</u>	<u>37, 1/2</u>	<u>38, 1</u>
Cl									<u>34, 0</u>	<u>35, 1/2</u>	<u>36, 1</u>	<u>37, 3/2</u>
S								<u>32, 0</u>	<u>33, 1/2</u>	<u>34, 1</u>	<u>35, 3/2</u>	<u>36, 2</u>
Ρ							<u>30, 0</u>	<u>31, 1/2</u>	<u>32, 1</u>	<u>33, 3/2</u>	<u>34, 2</u>	<u>35, 5/2</u>
Si						<u>28, 0</u>	<u>29, 1/2</u>	<u>30, 1</u>	<u>31, 3/2</u>	<u>32, 2</u>	<u>33, 5/2</u>	<u>34, 3</u>
A1					<u>26; 0</u>	<u>27, 1/2</u>	<u>28, 1</u>	<u>29, 3/2</u>	<u>30, 2</u>	<u>31, 5/2</u>	<u>32, 3</u>	<u>33, 7/2</u>
Mg				<u>24, 0</u>	<u>25, 1/2</u>	28,1	<u>27, 3/2</u>	<u>28, 2</u>	<u>29, 5/2</u>	<u>30, 3</u>	<u>31, 7/2</u>	<u>32, 4</u>
Na			<u>22, 0</u>	<u>23, 1/2</u>	<u>24, 1</u>	<u>25, 3/2</u>	28,2	<u>27, 5/2</u>	<u>28, 3</u>	<u>29, 7/2</u>	<u>30, 4</u>	<u>31, 9/2</u>
Ne		<u>20, 0</u>	<u>21, 1/2</u>	<u>22, 1</u>	<u>23, 3/2</u>	<u>24, 2</u>	<u>25, 5/2</u>	20,3	<u>27, 7/2</u>	<u>28, 4</u>	<u>29, 9/2</u>	<u>30, 5</u>
F	<u>18, 0</u>	<u>19, 1/2</u>	<u>20, 1</u>	<u>21, 3/2</u>	<u>22, 2</u>	<u>23, 5/2</u>	<u>24, 3</u>	<u>25, 7/2</u>	20,4	<u>27, 9/2</u>	<u>28, 5</u>	<u>29, 11/2</u>
0	<u>17, 1/2</u>	<u>18, 1</u>	<u>19, 3/2</u>	<u>20, 2</u>	<u>21, 5/2</u>	<u>22, 3</u>	<u>23, 7/2</u>	<u>24, 4</u>	<u>25, 9/2</u>	<u>28, 5</u>	<u>27, 11/2</u>	<u>28, 6</u>
	9	10	11	12	13	14	15	16	17	18	19	20

Positive parity states for ²⁶Al

Positive parity states for ²⁶Mg

Positive parity states for ²⁶Na

Positive parity states for ²⁶Ne

Positive parity states for ²⁶F

Positive parity states for ²⁶O

How to count basis dimensions

- Protons and neutrons all of those allowed by the triangle conditions $[(J_p)] \times [(J_n)] J_{pn}$ $D_{pn} = D_p D_n$
- Number of states for a given M-value the sum of the J dimensions from J_{max} down to J = M
- J-scheme basis has good J (or JT)
- M-scheme basis does not have good J only M is fixed but the eigenstates will have good J since H is rotationally invariant.

Example for ⁴⁸Ca in the pf shell

Example for ⁵⁶Ni in the pf shell

Example for ⁵⁶Ni in the pf shell

Example for ⁵⁶Ni in the pf shell

Codes

- M-scheme (matrix not stored) (~10¹⁰ M-states)
 - Antoine (Caurier)

Redstick (Ormand and Johnson)

- CMUShell (Horoi)
- Mshell (Mizuzaki)
- MFDn (Vary et al)
- JT-projected M-scheme (matrix stored) (~10⁵ JT-states)
 - Oxbash (Brown and Rae) (now replaced by NuShell@MSU)
 - NuShell (Rae)
 - NuShell@MSU (Brown and Rae) (NuShell with Oxbash style input and output)
- J-scheme (matrix not stored) (~10⁸ J-states)
 - Nathan (Caurier)
 - EICODE (Toivanen)
 - NuShellx (Rae)
 - NuShellx@MSU (Brown and Rae) (NuShellx with Oxbash style input and output)

available on the web

Bill Rae (Garsington) has made big advances Oxbash -> Nushell -> Nushellx Nushellx uses the [Jp Jn] J coupling to eliminate storage of the matrix. Similar to Nathan (Caurier et al) and Eicode (Toivanen) but faster. NuShellx@MSU uses these codes as a core for nuclear structure applications.

The faster, easy choice for large scale shell model calculations !

Effective interactions – what are the two-body matrix elements?

For sd shell USD, USDA, USDB interactions obtained from a fit to data use singular-value-decomposition method to obtain values for 20-30 of the most important linear combinations of TBME from about 600 energies

For pf same procedure for about 600 energies M. Honma, T. Otsuka, B. A. Brown and T. Mizusaki, Phys. Rev. C65, 061301 (2002) - GPFX1, GPFX1A

For heavier nuclei this method becomes unfeasible – we need better methods for understanding the nuclear medium and model space dependence of the NN and NNN interactions (tomorrow) talk at Stony Brook on ¹³²Sn and ²⁰⁸Pb regions

Full pf space for ⁵⁶Ni with GXPF1A Hamiltonian (order of one day computing time)

M. Horoi, B. A. Brown, T. Otsuka, M. Honma and T. Mizusaki, Phys. Rev. C 73, 061305(R) (2006).

Pure configurations

Requires an effective shell gap 0.9 MeV smaller than full fp NSCL

⁵⁸Ni(p,t)⁵⁶Ni

PHYSICAL REVIEW C

VOLUME 10, NUMBER 5

NOVEMBER 1974

Levels of ⁵⁶Ni⁺

H. Nann* and W. Benenson

Cyclotron Laboratory and Department of Physics, Michigan State University, East Lansing, Michigan 48824 (Received 5 August 1974)

The ⁵⁸Ni(p, t)⁵⁶Ni reaction was studied at 40 and 45 MeV beam energy. An energy resolution of 10–25 keV permitted observation of 60 levels with excitation energy up to 10.5 MeV. Spin and parity are assigned to levels which were excited with characteristic angular distributions. These include 0⁺ states at 3.95, 5.00, 6.44, 7.91, 9.92, 9.99, and 10.02 MeV.

60 levels 10 keV resolution

⁵⁸Ni(p,t)⁵⁶Ni

Pairing vibrations expect three 0^+ levels with T=0,1,2 strength 2:3:1 and spacing that goes as T(T+1)

¹³A. Bohr, in International Symposium on Nuclear Structure, Dubna, 1968 (IAEA, Vienna, 1968), p. 179.
¹⁴O. Nathan, in International Symposium on Nuclear Structure, Dubna, 1968 (see Ref. 13), p. 191.

⁵⁸Ni(p,t)⁵⁶Ni

Relative strength For 0⁺ states in ⁵⁶Ni

Reinvestigation of ⁵⁶Ni decay

Bhaskar Sur, Eric B. Norman, K. T. Lesko, Edgardo Browne, and Ruth-Mary Larimer

STELLAR WEAK INTERACTION RATES' FOR INTERMEDIATE-MASS NUCLEI. II. A = 21 TO A = 60

GEORGE M. FULLER² AND WILLIAM A. FOWLER W. K. Kellogg Radiation Laboratory, California Institute of Technology

AND

MICHAEL J. NEWMAN Applied Theoretical Physics Division, Los Alamos National Laboratory, University of California, Los Alamos Received 1981 June 12; accepted 1981 August 3

THE ASTROPHYSICAL JOURNAL, 252:715-740, 1982 January 15

@ 1982. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ELECTRON CAPTURE AND β-DECAY IN PRESUPERNOVA STARS

M. B. AUFDERHEIDE Physics Department, State University of New York at Stony Brook; and Department of Physics, Brookhaven National Laboratory G. E. BROWN, T. T. S. KUO, and D. B. STOUT Physics Department, State University of New York at Stony Brook

AND

P. VOGEL Physics Department, California Institute of Technology Received 1989 September 25; accepted 1990 April 2

THE ASTROPHYSICAL JOURNAL, 362:241-250, 1990

RATE TABLES FOR THE WEAK PROCESSES OF *pf*-SHELL NUCLEI IN STELLAR ENVIRONMENTS

K. LANGANKE¹ and G. MARTÍNEZ-PINEDO²

Institut for Fysik og Astronomi, Århus Universitet, DK-8000 Århus C, Denmark

Atomic Data and Nuclear Data Tables 79, 1-46 (2001)

⁷⁸Ni: beta-decay (Lisetsky)

Ni: Beta-decay results (Lisetsky)

P. T. Hosmer et al., PRL 94, 112501 (2005)

Phys. Rev. C 77, 064311 (2008)

Correlations between magnetic moments and beta decay

S. M. Perez^{1,2}, W. A. Richter³, B. A. Brown⁴ and M. Horoi⁵

¹ Department of Physics, University of Cape Town, Private Bag, Rondebosch 7700, South Africa

² iThemba LABS, P. O. Box 722, Somerset West 7129, South Africa

³ Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa

⁴ Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA and

⁵ Department of Physics, Central Michigan University, Mount Pleasant, MI 48859, USA

VOLUME 50, NUMBER 25

PHYSICAL REVIEW LETTERS

20 JUNE 1983

New Look at Magnetic Moments and Beta Decays of Mirror Nuclei

B. Buck

Department of Theoretical Physics, Oxford University, Oxford 0X1 3RH, United Kingdom

and

S. M. Perez

B. Alex Brown, USNDP, BNL, Nov 6, 2008

