USNDP 2008 (Nov 5 2008) -

Methods to cope with discrepant data: ¹⁹⁸Au half-life evaluation

Chris Ouellet, Scott Gereadts, Balraj Singh McMaster University

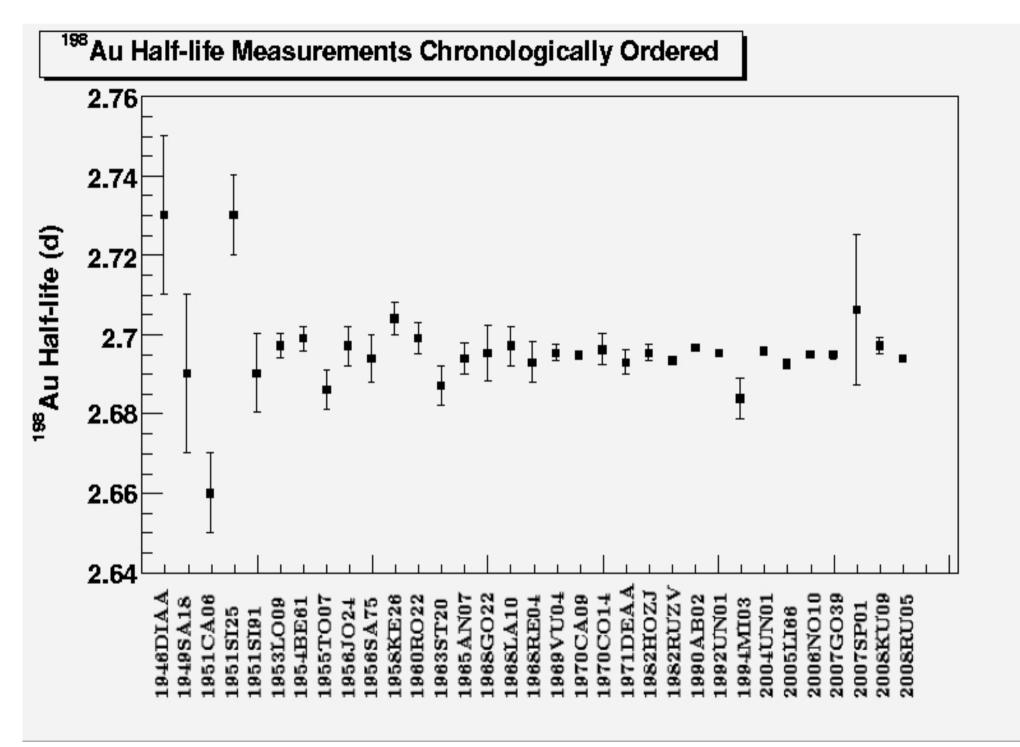
1 1 1 1 1 1 1 1 1

When the weighted mean returns reduced $\chi^2 > 8$ data is considered discrepant

Outline:

- Motivation for ¹⁹⁸Au $T_{1/2}$ evaluation
- Statistical approaches to discrepant data
- Predictive power, convergence of techniques
- Conclusions and outlook

Why is ¹⁹⁸Au important?


- Medical physics and basic physics research
- Radiation treatment of cancer through gold seed injection (particularly facial cancers)
- "gold" standard for γ -ray energy calibration 411802.05 (17) eV
- Ideal for investigation of recent claims of lowtemperature half-life variation
- Used to test basic exponential behaviour of radioactive decay law (NIM 2006 A566, 477)

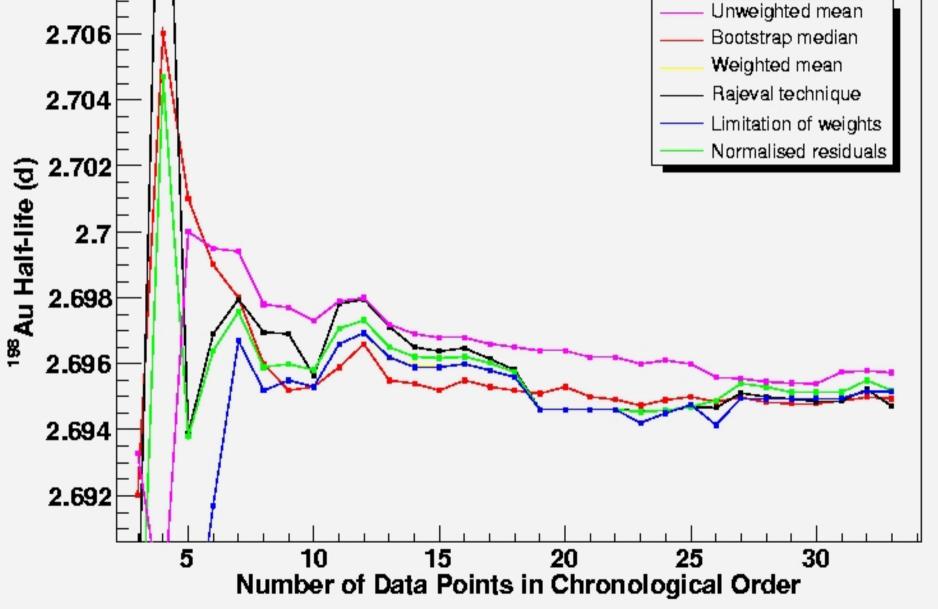
Motivation for a new evaluation

- A recent paper (2008 PRC 77, 065502) concluded with the remark: "(...) show measurements of the last 40 years with an error less than 0.005 d, so it seems a re-evaluation of the recommended half-life is called for."
- Available evaluations:
- ENSDF+NUBASE: 2.69517(21) d (2001/2003)
- A=198 preprint for ENSDF: 2.9647(3) d (2008)
- Wallet Card: 2.6956(3) d (2005)
- DDEP: 2.6944(8) d (2004 data up to 1994)

Source	$T_{1/2}$ (d) ($\Delta T_{1/2}$)	Technique (instrument)
1935AM01 *[4]	2.7	
1937M <i>C</i> 04 *[8]	2.7	chemical separation
1937PO04 *[9]	2.5	chemical separation
1941SH08 *[10]	2.7	chemical separation
1946DIAA [11]	2.73(2)	(ionization chamber)
1947SE33 *[12]	2.7	3 counting (Geiger counter)
1948SA36 *[13]	2.66(1)	$m{eta}$ counting ($m{eta}$ spectrometer)
1949SA18 [14]	2.69(2)	S counting (S spectrometer)
1949ST17 *[15]	2.7	β and γ counting
1951 CA06 [16]	2.66(1)	(Geiger Counter)
1951SI25 [17]	2.73(1)	B counting (liquid counter, B electroscope)
1951SI91 [18]	2.69(1)	Ionization current (ionization chamber, electrometer)
1953LO 0 9 [19]	2.697(3)	(ionization chamber)
1954BE61 [20]	2.699(3)	(ionization chamber)
1955TO07 [21]	2.686(5)	γ timing (2 ioniZation chambers)
1955TO27 *[22]	2.686 (0.005)	γ timing (2 ionization chambers)
1956 J O 24 [23]	2.697(5)	γ timing (NaJ)
1956SA75 [24]	2.694(6)	(Geiger counter)
1958KE26 [25]	2.704(4)	(Ionization chamber)
1960RO22 [26]	2.699(4)	Calorimetry on gold samples
1963ST20 [27]	2.687(5)	$m{eta}$ counting, ($m{eta}$ spectrometer)
1965AN07 [28]	2.694(4)	
1968GO22 [29]	2.695(7)	$(4\pi$ ionization chamber)
1968LA10 [30]	2.697(5)	(ionization chambers, 4π , β counters, γ spectrometers)
1968RE04 [31]	2.693(5)	(end window Geiger Muller counters)
1969VU04 [32]	2.695(2)	$(4\pi \ \beta \cdot \gamma \text{ coincidence counter})$
1970 CA09 [33]	2.6946(1)	
1970CO14 [34]	2.696(4)	γ counting (NaI)
1971DEAA [35]	2.693(3)	
1982HOZJ [36]	2.695(2)	
1982RUZV [37]	2.6935(4)	
1990AB02 [38]	2.6966(7)	γ counting (GeLi)
1992 UNO1 [39]	2.69517(21)	$(4\pi\gamma \text{ ioniZation chamber})$
1994MI03 [40]	2.6837(5)	γ timing (GeLi)
2004 UN01 [41]	2.69555(3)	$(4\pi\gamma$ ionization chamber)
2005LI66 [42]	2.6924(11)	$(4\pi\gamma \text{ ioniZation chamber})$
2006NO10 [43]	2.6947(6)	γ timing (GeLi)
2007G-039 [44]	2.6949(9)	γ timing (GeLi)
2007SP01 [45]	2.706(19)	γ timing (GeLi)
2008ICU09 [47]	2.6971(2)	γ timing (GeLi)
2008RU05 [46]	2.6939(4)	γ timing (2 GeLi 180 geometry accounts for source movement)

Table 1: ¹⁹⁸Au half-life data at room temperature from literature with reference. \bullet indicates the value was not considered in the current analysis. Uncertainty in brackets is on last digit(s).

Averaging methods


- Unweighted Mean
- Weighted Mean
- Limitation of Relative Statistical Weights
- Normalised Residuals
- Rajeval Technique
- Bootstrap Median (not a new method, common but not to physics)

- All methods used aside from the Bootstrap median are available courtesy of T.Kibedi from http://www.rsphysse.anu.edu.au/~txk103/
- The Bootstrap median code used was courtesy of V. Vanin and O. Helen (2006 NIM A481, 626)
- Bootstrap techniques are classified as computationaly intensive "resampling" techniques but do not take into account experimental uncertainties
- The other techniques are parametric statistics
- Followed the approach of D. McMahon (2004 Appl.Rad.Iso. 60 275) for comparing the various techniques

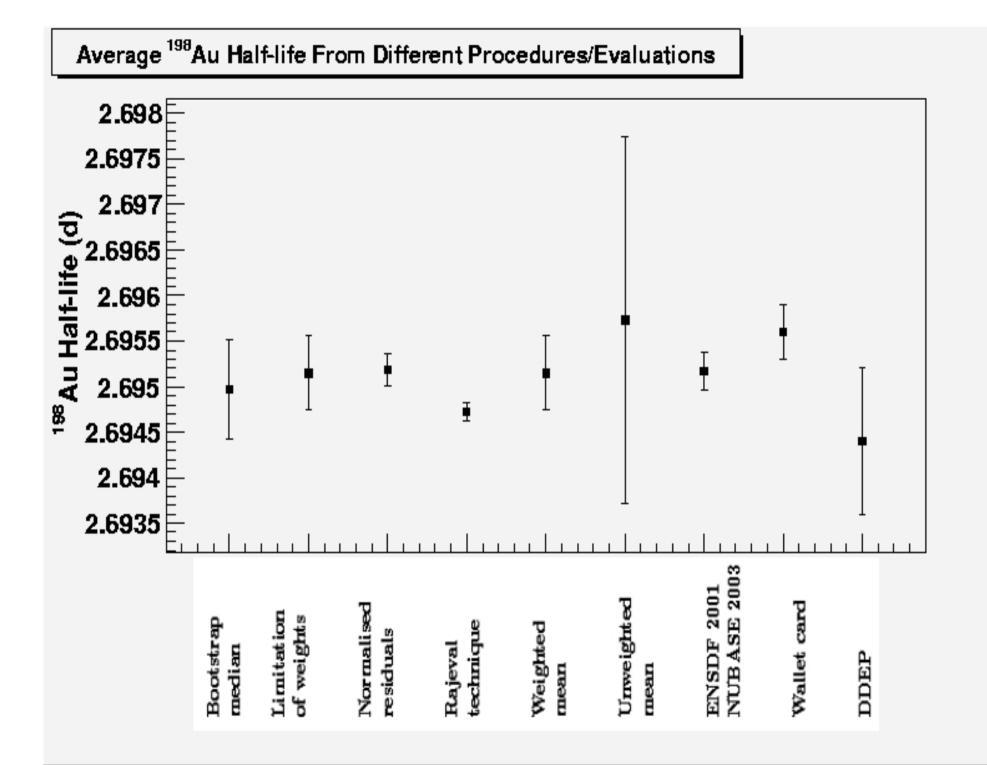
Predictive Power (Convergence)

- A priori there's no ideal method for analyzing discrepant convergent data
- Nonetheless, in the act of taking an average over several measurements we desire to have some predictive power to approach the "true" value as close as possible
- It is the behaviour of a statistical technique in terms of convergence which becomes most important as new data are incorporated

Chronological Behaviour of Statistical Techniques

Tabulated Results From the Various Techniques

- Unweighted mean
- Weighted mean
- Normalised residuals
- Rajeval's
- Bootstrap median
- Limitation of relative statistical weights


2.6957(20) d

2.69515(41) d $\chi^2=23.5$

- 2.69518(17) d $\chi^2=2.5$
- 2.694722(92) d $\chi^2=2.0$

2.69497(55) d

2.69515(41) d $\chi^2=23.4$

Bootstrap median recomended 198 Au T_{1/2} = 2.69497(55) d

- The Bootstrap median clearly converges the quickest and additionally has the following desirable traits:
- Not easily affected by outliers
- Not easily thrown off by a single high precision measurement
- Uncertainty is not physically unreasonable considering the measured chemical effect on half-lives ~0.01% (RT may not be meaningful)
- Uncertainty is large enough to cover other methods

The Bootstrap Method

- Bootstrap means it "Re-samples" the data set
- If you have X data points then the bootstrap samples with replacement X data N times
- It then applies a statistical function, in our case the median on each sample quoted uncertainties are not considered
- An unweighted average over all N sample medians is the bootstrap estimate
- The uncertainty given by the method is the unweighted average of the difference between the bootstrap estimate and each sample median

Conclusion

- Recommended ¹⁹⁸Au half life 2.69497(55) d based on bootstrap method
- Proposed improvements to bootstrap method to include uncertainties
- Need a good Monte-Carlo
- Ultimately would like to put it together with Avetools so that evaluators and other users have at their disposal all methods