NEW PRECISION INTERNAL CONVERSION MEASUREMENTS AS TESTS OF INTERNAL CONVERSION THEORY ^{197m}Pt CASE

TEXAS A&M PROGRAM TO MEASURE ICC N. NICA

Electron Internal Conversion Coefficients (ICC)

- Central for nuclear data programs
- Big impact on quality of data
- Overall big impact on quality of nuclear science
- Until recently still a disputed issue!

2002RA45 survey ICCs' theories and measurements:

- Theory: RHFS and RDF comparison
 - Exchange interaction, Finite size of nucleus, Hole treatment
- Experiment:
 - 100 E2, M3, E3, M4, E5 ICC values, 0.5%-6% precision, very few <1% precision

Hole treatment and 2002RA45 conclusions, $\Delta(exp:theory)\%$

- No hole: +0.19(26)% BEST!
 - **o Bound and continuum states SCF of neutral atom**
- *Hole-SCF*: -0.94(24)%
 - **o Bound state SCF of neutral atom;**
 - Continuum state SCF of ion + hole (full relaxation of ion orbitals)
- *Hole-FO*: -1.18(24)%
 - **o Bound state SCF of neutral atom;**
 - Continuum state ion field constructed from bound wave functions of neutral atom (insufficient time for relaxation of ion orbitals)

PHYSICAL ARGUMENT

K-shell filling time vs. time to leave atom $\sim 10^{-15} - 10^{-17} \text{ s} \gg \sim 10^{-18} \text{ s}$

Texas A&M precision ICC measurements:

• KX to γ rays ratio method

$$\alpha_{K}\omega_{K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}}$$

• N_K , N_γ measured from only one K-shell converted transition • ω_K from 1999SCZX (compilation and fit)

- Very precise detection efficiency for ORTEC γ-X 280-cm³ coaxial HPGe at standard distance of 151 mm:
 - 0.2%, 50-1400 keV (2002HA61, 2003HE28)
 - 0.4%, 1.4-3.5 MeV (2004HE34)
 - 0.7%, 10-50 keV (KX rays domain)

DETECTOR EFFICIENCY 50 keV < E_{γ} < 1.4 MeV

Coaxial 280-cc n-type Ge detector:

- Measured absolute efficiency (⁶⁰Co source from PTB with activity known to + 0.1%)
- Measured relative efficiency (9 sources)
- •Calculated efficiencies with Monte Carlo (Integrated Tiger Series - CYLTRAN code)

0.2% uncertainty for the interval 50-1400 keV

MEASUREMENT vs **MONTE CARLO CALCULATIONS**, E_{γ} > 800 keV

KX to γ rays ratio method

- o Sources for n_{th} activation
 - Small absorption (< 0.1%)</p>
 - Dead time (< 5%)</p>
 - Statistics (> 10⁶ for γ or x-rays)
 - High spectrum purity
 - Minimize activation time (0.5 h)

o Impurity analysis - essentially based on ENSDF

- Trace and correct impurity to 0.01% level
- Use decay-curve analysis
- Especially important for the K X-rays region

• Voigt-shape (Lorentzian) correction for X-rays

Done by simulation spectra, analyzed as the real spectra

o Coincidence summing correction

^{197m}Pt 346.5 MeV, M4 transition α(K) measurement

- $\alpha(K)\exp = 4.02 \ 8 \ (1987Vi08), \ \alpha(K)_{no_hole} = 4.190, \ \alpha(K)_{hole_FO} = 4.273$
- α(K)exp *discrepant* relative to "no hole" and "hole-FO" theories

%IT = 96.7 4; $\%\beta^{-}$ = 3.3 4

^{197m}Pt 346.5 MeV, M4 transition α(K) measurement – cont.

- Activation cross section small; cross-section ratio unfavorable... $\sigma_{th}(^{197}\text{Pt}^{m}) = 0.044 \text{ b}$ $\sigma_{th}(^{197}\text{Pt}^{gs}) = 0.72 \text{ b}$
- Relatively high mass of ¹⁹⁶Pt(97.5%) = 1.5 g ...
- Relatively high attenuation correction, 1.4(5) % ...
- Unfavorable decay-rate ratio D.R.(197 Pt^m)/ D.R.(197 Pt^{gs})|_{ini} = 0.07 ...
- High acquisition dead time, 28% 14% ...
- For t_{activation} = 60 min
- 77γ from ¹⁹⁷Pt^{gs} decay ...
 - \circ Fully obturates the 75 78 keV K β X rays of Pt ...
 - O Gives a huge back-scattering bump beneath the 65-67 keV Kα X rays of Pt

KX-rays region for ¹⁹⁷**Pt decay**

Impurities affecting the PtKX and 346.5 γ regions

PtKX region: % impurity and % uncertainty relative to pure PtKX from the internal conversion of 346.5γ

Total KX impurities	4.1%	0.3%
^{194Ir} (PtKX), ¹⁹⁸ Au(HgKX)	0.0394%	0.0013%
¹⁹² Ir (OsKx, PtKX),		
¹⁹⁹ Pt(AuKX)	0.117%	0.012%
¹⁹⁵ Ptm (PtKX)	1.06%	0.12%
¹⁹⁹ Au(HgKX)	1.30%	0.13%
¹⁹⁷ Hg(AuKX)	1.62%	0.20%

40

346.5γ region: % impurity and % uncertainty relative to pure 346.5γ

 $344\gamma \,(^{152}\mathrm{Eu^m}) \qquad 0.65\% \qquad 0.10\%$

Fit of ¹⁹⁷Pt^m decay curves

a) 346.5**y**

Up: smaller γ-ray region Down: larger γ-ray region

b) KX rays Up: ¹⁹⁷Pt^m, ¹⁹⁷Pt^{gs}, ¹⁹⁷Hg, all 27 points Middle: same, first 10 points Down: pure ¹⁹⁷Pt^m (first 10 points)

Results

	Value	Unc	%Unc
PtKX, D.R.(0), (s^{-1})	1126	7	0.7%
$346.5g, D.R.(0), (s^{-1})$	136.4	0.3	0.3%
$\omega_{\rm K}({\rm Pt})$	0.959	0.004	0.4%
ε(KX=69.34keV), (%)	1.019	0.002	0.2%
ε (346.5γ), (%)	0.518	0.001	0.2%
Raw α _K (exp,346.5γ)	4.37	0.04	0.8%
CoinSum(346.5g-53γPtLX)	2.3%	0.3%	11.1%
¹⁹⁷ Pt β ⁻ (AuKX)/IT(PtKX)	1.8%	0.1	2.6%
Atten corr factor	1.014	0.005	0.5%
α _K (exp,346.5γ)	4.26	0.04	1.0%
α_K(no-hole, 346.5 γ)	4.190		
α _K (hole-FO, 346.5γ)	4.273		

	Raman <i>et al</i> .				Dest 20	pius
			Best 20 cases		remeasured	
	(2002)				¹⁹³ Ir ^m , ¹³⁴ Cs	^m , ¹³⁷ Ba
No hole	+0.19(26)	1.7	+0.10(38)	2.4	+1.4(8)	14.7
Hole, FO	-1.18(24)	1.4	-1.25(36)	2.2	-0.66(25)	2.0