2008 NDAG / CSEWG / USNDP Meeting, BNL, Nov. 3-7, 2008

Nuclear Reaction Modeling at LANL

T. Kawano P. Talou M. Dupuis M. B. Chadwick Theoretical Division, T-2 Los Alamos National Laboratory

Overview

Development of Nuclear Reaction Theory

- Hauser-Feshbach theory for deformed nuclei
 - Transmission coefficients by Coupled-Channels model for the excited states
 - Cross section calculations on the excited states feasible
 - Width-fluctuation, need more work
- Monte Carlo technique for sequential particle emission
 - Prompt fission neutron spectrum calculation
 - Monte Carlo Hauser-Feshbach calculation
- Quantum mechanical pre-equilibrium process
 - Fully microscopic, Hartree-Fock-BCS, with RPA
- Model Codes
 - We continue developing McGNASH, though it slowed down somewhat.
 - New Hauser-Feshbach Monte Carlo code, CGM, underway.
 - CoH capable for calculating nuclear reactions on excited states.

Introduction

Neutron Reaction on Deformed Nuclei at Low Energies

- Incorporate Coupled-Channels (CC) method into Hauser-Feshbach formula
 - Inverse channel problem
 - What is the appropriate transmission coefficient for the excited states ?
 - Replaced by the one for the ground state (historical)
 - Solve the CC equation for the excited state (detailed balance)
 - Width fluctuation correction when off-diagonal elements exist
 - Moldauer
 - Engelbrecht-Weidenmüller transformation
 - Kawai-Kerman-McVoy (KKM)
 - Nishioka-Weidenmuüller-Yoshida, GOE for coupled-channels
- I will report :
 - Coupled-Channels Hauser-Feshbach (CCHF) method
 - Apply to calculate neutron capture cross sections for deformed nuclei (no fissile)
 - Super-elastic calculation

Detailed Balance for Compound Reaction

Neutron Emission Probabilities \propto Transmission

- The same transmission coefficients are used for both entrance and exit channels.
- Sometimes exit channels are corrected by a factor of $1 + \sigma_D / \sigma_R$.
- Solve the Coupled-Channels equations for the excited state, which couples to the negative energy states (super-elastic).

Coupled-Channels Calculations for the Excited States

Preliminary

Inelastic Scattering Cross Sections

Hauser-Feshbach Calculations for the Excited States

Preliminary

Monte Carlo Simulation for Particle Emission

Application of Monte Carlo to Hauser-Feshbach model at LANL

- prompt fission neutron spectra
 - correlation between n and γ
- \blacksquare β -delayed γ spectra
- γ -ray multiplicity distribution

- Internal MC gives all correlation between a specific reaction and observables.
- External MC gives target recoil in the laboratory frame.

