Global calculations with the interacting boson model

P. Van Isacker, GANIL, France

Brief review of the interacting boson model
Global mass + spectra calculations
Discussion of NNDC

Interacting boson model

- Describe the nucleus as a system of N interacting s and d bosons. Hamiltonian:

$$
\hat{H}_{\text {IBM }}=\sum_{i=1}^{6} \varepsilon_{i} \hat{b}_{i}^{+} \hat{b}_{i}+\sum_{i_{i} i_{2} i_{i} i_{4}=1}^{6} v_{i_{i} i_{i} i_{4}} \hat{b}_{i 4}^{+} \hat{b}_{i_{2}}^{+} \hat{b}_{i} \hat{b}_{i_{4}}+\cdots
$$

- Justification from
- Shell model: s and d bosons are associated with S and D fermion (Cooper) pairs.
- Geometric model: for large boson number the IBM reduces to a liquid-drop hamiltonian.

General IBM hamiltonian

- Most general rotationally invariant IBM hamiltonian:

$$
\begin{aligned}
& \hat{H}_{\text {IBM }}=E_{0}+\hat{H}_{1}+\hat{H}_{2}+\hat{H}_{3}+\cdots \\
& \hat{H}_{1}=\varepsilon_{s} \hat{n}_{s}+\varepsilon_{d} \hat{n}_{d}
\end{aligned}
$$

$$
\left.\hat{H}_{2}=\sum_{l_{1} l_{l} l_{l}^{l} l_{l}, L l_{2} l_{2}^{\prime}} \tilde{v}_{l_{1}}^{L} \times b_{l_{2}}^{+}\right)^{(L)} \cdot\left(\tilde{b}_{l_{1}} \times \tilde{b}_{l_{2}^{\prime}}\right)^{(L)}
$$

$$
\hat{H}_{3}=\sum_{l_{1} l_{2} l_{1} l_{1} l_{3}, L} \tilde{v}_{L_{1}, l_{1} l_{1}^{\prime} l_{3}^{\prime}}^{L}\left(b_{l_{1}}^{+} \times b_{l_{2}}^{+} \times b_{l_{3}}^{+}\right)^{(L)} \cdot\left(\tilde{b}_{l_{1}} \times \tilde{b}_{l_{2}} \times \tilde{b}_{l_{3}}\right)^{(L)}
$$

Parameters in the IBM hamiltonian

- Spectrum of a single nucleus: $0+1+5+10$ parameters.
- Overall binding energy: $1+1+2+7$ parameters.
- \Rightarrow A total of 27 parameters if all interactions up to three-body are included (cfr. 63 2-body $s d$-shell model matrix elements).

Order	Number of interactions		
	total	type I ${ }^{a}$	${\text { type } \mathrm{II}^{b}}^{3}$
$n=0$	1	1	0
$n=1$	2	1	1
$n=2$	7	2	5
$n=3$	17	7	10

[^0]
Classical limit

- Coherent state:
$|N ; \beta, \gamma\rangle \propto\left[s^{+}+\beta \cos \gamma d_{0}^{+}+\sqrt{\frac{1}{2}} \beta \sin \gamma\left(d_{-2}^{+}+d_{+2}^{+}\right)\right]{ }^{N}|\mathrm{o}\rangle$
- Generic form of the potential:

$$
\begin{aligned}
V(\beta, \gamma) & \equiv\langle N ; \beta, \gamma| E_{0}+\hat{H}_{1}+\hat{H}_{2}+\hat{H}_{3}+\cdots|N ; \beta, \gamma\rangle \\
& =E_{0}+\sum_{n \geq 1} \frac{N(N-1) \cdots(N-n+1)}{\left(1+\beta^{2}\right)^{n}} \sum_{k l} a_{k l}^{(n)} \beta^{2 k+3 l} \cos ^{\prime} 3 \gamma
\end{aligned}
$$

Coefficients up to third order

$$
\begin{aligned}
& a_{00}^{(1)}=\varepsilon_{s}, \quad a_{10}^{(1)}=\varepsilon_{d}, \\
& a_{00}^{(2)}=\frac{1}{2} v_{s s s s}^{0}, \quad a_{10}^{(2)}=\sqrt{\frac{1}{5}} v_{s s d d}^{0}+v_{s d s d}^{2}, \quad a_{01}^{(2)}=-\sqrt{\frac{2}{7}} v_{s d d d}^{2}, \\
& a_{20}^{(2)}=\frac{1}{10} v_{d d d d}^{0}+\frac{1}{7} v_{d d d d}^{2}+\frac{9}{35} v_{d d d d}^{4}, \\
& a_{00}^{(3)}=\frac{1}{6} v_{s s s s s s}^{0}, \quad a_{10}^{(3)}=\sqrt{\frac{1}{15}} v_{s s s s d d}^{0}+\frac{1}{2} v_{s s d s s d}^{2}, \\
& a_{01}^{(3)}=-\frac{1}{3} \sqrt{\frac{2}{35}} v_{s s s d d d}^{0}-\sqrt{\frac{2}{7}} v_{s s d s d d}^{2}, \\
& a_{20}^{(3)}=\frac{1}{10} v_{s d d s d d}^{0}+\sqrt{\frac{1}{7}} v_{s s d d d d}^{2}+\frac{1}{7} v_{s d d s d d}^{2}+\frac{9}{35} v_{s d d s d d}^{4}, \\
& a_{11}^{(3)}=-\frac{1}{5} \sqrt{\frac{2}{21}} v_{s d d d d d}^{0}-\frac{\sqrt{2}}{7} v_{s d d d d d}^{2}-\frac{18}{35} \sqrt{\frac{2}{11}} v_{s d d d d d}^{4}, \\
& a_{30}^{(3)}=\frac{1}{14} v_{d d d d d d}^{2}+\frac{1}{30} v_{d d d d d d}^{3}+\frac{3}{154} v_{d d d d d d}^{4}+\frac{7}{165} v_{d d d d d d}^{6}, \\
& a_{02}^{(3)}=\frac{1}{105} v_{d d d d d d}^{0}-\frac{1}{30} v_{d d d d d d}^{3}+\frac{3}{110} v_{d d d d d d}^{4}-\frac{4}{1155} v_{d d d d d d}^{6} .
\end{aligned}
$$

Application to $\mathrm{SO}(6)$-like nuclei

- One- + two-body hamiltonian:
$\hat{H}_{1+2}=\varepsilon \hat{n}_{d}+\kappa \hat{Q} \cdot \hat{Q}+\kappa^{\prime} \hat{L} \cdot \hat{L}+\lambda \hat{n}_{d}^{2}$
- Cubic interaction (usually $L=3$):

$$
\hat{H}_{3}^{d}=\sum_{L} v_{L}\left(d^{+} \times d^{+} \times d^{+}\right)^{(L)} \cdot(\tilde{d} \times \tilde{d} \times \tilde{d})^{(L)}
$$

- Signature splitting $S(J)$ of γ band is sensitive to effects of cubic interaction (triaxiality)

$$
S(J)=\frac{E(J)-E(J-1)}{E(J)-E(J-2)} \cdot \frac{J(J+1)-(J-1)(J-2)}{J(J+1)-J(J-1)}-1
$$

Spectra of ruthenium isotopes

USNDP, Brookhaven, November 2008

Spectra of ruthenium isotopes

USNDP, Brookhaven, November 2008

Spectra of ruthenium isotopes

USNDP, Brookhaven, November 2008

Signature splitting of γ band

Signature splitting of γ band

Signature splitting of γ band

Shape of ${ }^{108} \mathrm{Ru}$

USNDP, Brookhaven, November 2008

Shape of ${ }^{110} \mathrm{Ru}$

USNDP, Brookhaven, November 2008

Shape of ${ }^{112} \mathrm{Ru}$

USNDP, Brookhaven, November 2008

Global IBM-1 calculations

- Consider an entire shell e.g. all even-even nuclei with $50<Z<82$ and $82<N<126$.
- Fit IBM-1 hamiltonian to all known nuclei in the shell and use this hamiltonian to predict properties of nuclei far from stability.
- Two strategies:
- Constant hamiltonian for all nuclei.
- Parameters depending on the fractional filling of the valence neutron and proton shells.
- Masses can be included in the analysis.

How to include masses?

- Relation between mass and binding energy:

$$
M(N, Z) c^{2}=N m_{\mathrm{n}} c^{2}+Z m_{\mathrm{p}} c^{2}-B(N, Z)
$$

- Liquid drop mass formula (von Weizsäcker):

$$
\begin{aligned}
B(N, Z) & =a_{\mathrm{vol}} A-a_{\mathrm{sur}} A^{2 / 3}-a_{\mathrm{cou}} \frac{Z(Z-1)}{A^{1 / 3}}+a_{\mathrm{pai}} \frac{\delta(N, Z)}{A^{1 / 2}} \\
& -\frac{S_{\mathrm{v}}}{1+S_{\mathrm{v}} A^{-1 / 3} / S_{\mathrm{s}}} \frac{T(T+1)}{A}
\end{aligned}
$$

- Fit to nuclear masses in AME03: $\sigma \approx 2.4 \mathrm{MeV}$.

The 'unfolding' of the mass surface

USNDP, Brookhaven, November 2008

Shell corrections

- Observed deviations suggest shell corrections depending on $n_{v}+n_{\pi}$, the total number of valence neutrons + protons (particles or holes).
- A simple parametrisation consists of two terms, linear and quadratic in $F_{\max }=\left(n_{v}+n_{\pi}\right) / 2$.

$$
\begin{aligned}
B(N, Z)= & a_{\mathrm{vol}} A-a_{\mathrm{sur}} A^{2 / 3}-a_{\mathrm{cou}} \frac{Z(Z-1)}{A^{1 / 3}}+a_{\mathrm{pai}} \frac{\delta(N, Z)}{A^{1 / 2}} \\
& -\frac{S_{\mathrm{v}}}{1+S_{\mathrm{v}} A^{-1 / 3} / S_{\mathrm{s}}} \frac{T(T+1)}{A}+a_{F} F_{\max }+a_{F F} F_{\max }^{2}
\end{aligned}
$$

Shell-corrected LDM

USNDP, Brookhaven, November 2008

Global mass + spectra calculations

- Masses:

$$
\begin{aligned}
B(N, Z) & =a_{\mathrm{vol}} A-a_{\mathrm{sur}} A^{2 / 3}-a_{\mathrm{cou}} \frac{Z(Z-1)}{A^{1 / 3}}+a_{\mathrm{pai}} \frac{\delta(N, Z)}{A^{1 / 2}} \\
& -\frac{S_{\mathrm{v}}}{1+S_{\mathrm{v}} A^{-1 / 3} / S_{\mathrm{s}}} \frac{T(T+1)}{A}-\left\langle 0_{1}^{+}\right| \hat{H}_{\mathrm{IBM}}\left|0_{1}^{+}\right\rangle
\end{aligned}
$$

- Energy spectra from diagonalization of $H_{\text {IBm }}$.
- Problem: Initial choice of parameters.
- Criticism: $H_{\text {IBM }}$ depends on N and not on N_{v} and N_{π} separately \Rightarrow spectra of $N_{v}+N_{\pi}=\mathrm{c}^{\text {te }}$ nuclei are identical (F-spin multiplets).

AME03-LDM

AME03-LDM $+\langle\mathrm{gs}| \mathrm{H}_{\mathrm{IBM}}|\mathrm{gs}\rangle$

Fractional-filling dependence

- One- + two-body hamiltonian:

$$
\hat{H}_{1+2}=\varepsilon \hat{n}_{d}+\kappa \hat{Q} \cdot \hat{Q}+\kappa^{\prime} \hat{L} \cdot \hat{L}+\kappa^{\prime \prime} \hat{P}_{+} \hat{P}_{-}+\lambda \hat{n}_{d}^{2}
$$

- Dependence of parameters. For example:

$$
\begin{aligned}
& x=\sum_{i j} x_{i j}\left(f_{v}\right)^{i}\left(f_{\pi}\right)^{j}, \quad f_{\rho}=\frac{n_{\rho}}{\Omega_{\rho}} \\
& x=\sum_{i j} x_{i j}\left(F_{v}\right)^{i}\left(F_{\pi}\right)^{j}, \quad F_{\rho}=\frac{N_{\rho}}{\Omega_{\rho}} \\
& x=\sum_{i} x_{i}(P)^{i}, \quad P=\frac{N_{v} N_{\pi}}{N_{v}+N_{\pi}}
\end{aligned}
$$

Application to rare-earth nuclei

- Application to even-even rare-earth nuclei with $84<N<124 \& 52<Z<80(1280$ levels in 123 nuclei).
- Parameters ε and λ linear in F_{v} and $F_{\pi} ; \kappa, \kappa^{\prime}$ and $\kappa^{\prime \prime}$ linear in P.
- Root-mean-square deviation of 179 keV .

Constant IBM hamiltonian

USNDP, Brookhaven, November 2008

Variable IBM hamiltonian

Constant IBM hamiltonian

USNDP, Brookhaven, November 2008

Variable IBM hamiltonian

Constant IBM hamiltonian

USNDP, Brookhaven, November 2008

Variable IBM hamiltonian

Constant IBM hamiltonian

USNDP, Brookhaven, November 2008

Variable IBM hamiltonian

Conclusions

- Simple application of well-established model.
- IBM is valence-nucleon model \Rightarrow predictive power depends on an assumed shell structure.
- Geometry is derived from data in an unbiased manner.
- For further study:
- Effective minimization procedure in a multidimensional parameter space.
- Dependence on fractional filling.

Comments on the use of NNDC

- Nuclear masses:
- From Audi, Wapstra and Thibault (2003).
- But: No update since 2003. Use of isolated compilations (e.g. Jyväskylä) is difficult and perhaps dangerous.
- Nuclear radii:
- Several compilations exist.
- But: Do they have the same reliability as AME? Which one to use? Regular updates?

Comments on the use of NNDC

- Nuclear spectra:
- Systematic use of band-plotting option in NuDat \Rightarrow important for identification of collective bands.
- Occasional problems:
- Gamma-band structure in ${ }^{160} \mathrm{Dy}$ and ${ }^{170} \mathrm{Yb}$??
- Gamma band cut in two in ${ }^{180} \mathrm{~W}$??
- $2^{+} @ 691 \mathrm{keV}$ in ${ }^{174} \mathrm{Os}$ should be in beta band??
- Beta band cut in two in ${ }^{180} \mathrm{Os}$??
- In general: confusion concerning beta band in deformed nuclei. What are the correct criteria to label a $K^{\pi}=0^{+}$band as a collective beta band?

[^0]: ${ }^{a}$ Interaction energy is constant for all states with the same N.
 ${ }^{b}$ Interaction energy varies from state to state.

