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INTRODUCTION

A basic tool for modern neutronics analysis is a library of multigroup cross 
sections, accompanied by a covariance matrix describing the uncertainty of these 
data and their correlations.  A common application of such a covariance library is 
to provide input for the calculation of the variance D(z) due to the data, of a 
calculated integral quantity z. 

Beyond this single number, it is often of interest to inquire as to the magnitude of 
the contributions to the variance from just a portion of the data field.  For example, 
one may want to know the contribution of the uncertainty in the energy dependent 
cross section (E) for the 16O(n,p) reaction to the uncertainty of keff for a given 
reactor.  Knowing this would clearly be helpful in judging the benefits of 
performing a new measurement, calculation, or evaluation of (E).

Below, we propose a methodology for determining the contribution from an 
individual parameter, or an identified group of parameters, to the variance of z.  We 
show that the magnitude of the contribution depends, in an important way, on the 
extent of data correlations.



PARTIAL CONTRIBUTIONS TO THE TOTAL VARIANCE

Suppose there are k data parameters.  A single parameter might correspond to the 
cross section for a specified nuclear reaction in a specified energy group.  We begin 
with the simple case where there are no correlations present in the covariance 
library.  If we neglect higher order derivatives, the total variance D(z) of an integral 
quantity z is

D(z) = S1
2 D(a1) + S2

2 D(a2) + ... + Sk
2 D(ak), where (1)

Si = z / ai (2)

In the uncorrelated case, the size of the contribution of the uncertainty of one of the 
parameters, say ak, to D(z) is obvious.  It is just the k-th term in the sum. The 
situation becomes considerably more complex when there are non-zero correlations 
in the data.  In this case, D(z) is no longer a simple weighted sum of variances of 
the parameters. If there are k parameters,

D(z) =  Si Sj cov(ai, aj) (3)
i =1, k 

j =1, k

In this more general case, it is not at all clear which term or terms should be 
identified as providing "the contribution of the k-th parameter to D(z)."



One way to proceed is to introduce the concept of the "uncertainty profile,"

D(z) =   L(z,i), where (4)
i =1, k

L(z,i) =    Si Sj cov(ai, aj) (5)
j =1, k 

If one forms a k × k square matrix square matrix U, having the k2 elements             
uij = Si Sj cov(ai, aj), then L(z,i) is the sum of the elements of the i-th row of U.

Some authors use the uncertainty profile L(z,i) to quantify the contribution of 
parameter i to D(z) (see, for example, Ref. 2).  This is an attractive approach for 
three reasons:  First, the profile is straightforward to calculate.  Secondly, it 
provides a useful indicator of where the "action" is in the variance summation.  
Finally, as shown in Eq. (4), the quantities L(z,i) sum up to the variance D(z).

These advantages, however, are offset by the following disadvantages.  Although 
L(z,i) has the units of variance (barns-squared), it is not a variance.  For this 
reason, it cannot be guaranteed to be a positive quantity.   The square root of L(z,i) 
is not a standard deviation and can even be imaginary.



VARIANCE PENALTY

In this talk, we propose an alternative to the use of uncertainty profiles.  The 
proposed approach fits with the common sense definition of "contribution" and, at 
the same avoids the mathematical problems just mentioned.  

We propose to quantify the contribution of the uncertainty in ak to the 
variance of z in terms of the "variance penalty" associated with our less-than-
perfect knowledge of ak.

The variance penalty is directly related to the usual reason for wanting to know the 
contribution of parameter ak to the variance of z, namely, to learn which parameters 
have the most leverage in improving the accuracy of our knowledge of z.

In this simplest case where the parameters are uncorrelated, all three of the 
mentioned procedures for calculating the contribution of ak to D(z) give the same 
result, namely,  Sk

2 D(ak).  

We now describe a procedure for computing the variance penalty in the interesting, 
and important, case where there are finite correlations.



The procedure involves
(1) calculating the current value of the variance D(z),
(2) imagining that the parameters of interest are re-measured with near-perfect 

precision,
(3) using the covariance matrix of this hypothetical re-measurement as input to 

an evaluation of the updated variance D(z') using the method of minimum-variance 
estimation, and

(4) calculating the variance penalty as D(z) - D(z').  

Fortunately, to use this approach, we do not actually have to go to the laboratory 
and do the near-perfect re-measurement, because in minimum variance-estimation, 
the actual numerical results of measurements do not have any effect on the updated 
variance.  For the present purposes, a crucial feature of minimum-variance 
estimation is that the variance penalty D(z) - D(z'), thus defined, is itself a variance 
and, hence, is guaranteed to be a positive number.

A convenient reference to the methodology of updating an evaluation, using 
minimum-variance estimation, is Ref. 1.  Following the notation there, suppose that 
there exists a data set corresponding to the prior measurement (or evaluation) of k 
different physical parameters, here represented as a column vector a, with elements 
(aj , j=1, ... , k). 



Each measurement is assumed to differ from the true value x by a random error e
a = x + e (6)

The errors e are assumed to have zero mean, so that
E(a) = x, (7)

Here E( ) denotes the expectation operator.  It is also assumed that the errors e have 
finite second moments.  These second moments form the elements of the covariance 
matrix D(a),

D(a) = cov(a,a) = E(e eT), (8)
Here (T) denotes the matrix transpose.

We now consider the impact of the results of a set of new measurements, represented 
by a column vector b with elements (bi , 

i=1, ... ,m).  The expected or true value of b, 
E(b), is a known function of the true values of the parameters, E(a). All such 
functions are assumed here to be linear, with any constant terms absorbed into the 
definition of the vectors a and b,

E(b) = R E(a) = R x (9)
In Eq. (11), Rij is the ij-th element of the m  k sensitivity matrix R.  As above, a 

vector of random errors f, with zero mean, causes b to differ from the expected value
b = R x + f (10)



For the present purposes, it is helpful to partition the parameter matrix a into n 
"passive" parameters vn,1 and m "active" parameters wm,1 (the parameters of 
particular interest).

vn,1

a = [ ] (11) 

wm,1

Clearly, n + m = k.   Note that, for the assumed precise re-measurements, the 
sensitivity matrix R has the special partitioned form,

R = [ 0m,n Im,m ] (12)

Here 0m,n is an m × n  rectangular matrix containing only zeroes, and Im,m 
is the 

m × m identity matrix.  Hence,
R a = w (13)

The covariance matrix of the precise re-measurements b is given by D(b) =E(f fT).  
In the present work, we assume that these measurements are uncorrelated with each 
other,

D(b)  = m,m (14)

where m,m denotes a square matrix of dimension m, with very small elements ii 

on the diagonal and zeroes elsewhere.



"Cross-type" covariances, indicating correlations between the prior and new 
measurements, can be defined analogously, cov(a,b) = E(e fT) and cov(b,a) =
E(f eT).  However, in the present context, we assume that the precise re-
measurements are uncorrelated with the prior measurements, so that

cov(a,b) = cov(b, a)T =  0k,m (15)
We note that the vector R a contains the values of the newly measured quantities b, 
as calculated with the prior evaluation of the parameters.  We introduce the 
notation p for the "discrepancy" vector

p = b - R a (16)
The covariance matrix for p can be written immediately,

D(p) = cov(p,p) = cov[ (b - R a), (b - R a) ] (17)
= D(b) - cov(b,a) RT - R cov(a,b) + R D(a) RT (18)

For convenience, we introduce the inverse of D(p)
G = D-1(p) (19)

Substituting from Eqs. (14) and (15) into Eq. (18), we obtain
D(p) = m,m + R D(a) RT (20)

In the limit as the ii approach zero, D(p) approaches

R D(a) RT = D(R a) = D(w) (21)



Recall that our object is to determine the variance penalty of the integral quantity z 
associated with our imperfect knowledge of w.  In matrix notation,

z = S a (22)

where S is a k element row vector containing the sensitivities discussed above in 
Eq. (2), and z is a scalar.

The impact of a new measurement on the variance (or covariances) of an integral 
quantity z (or a set of such quantities) is derived in Ref. 1.  In particular, Eq. (12) of 
that reference supplies the updated variance D(z') as a function of the prior variance 
D(z) and other known quantities.

D(z') = D(z) - D[ cov(z,p) G p ] (23)

We are now in a position to define the variance penalty P(z,w),

P(z,w D(z) - D(z') (24)

P(z,w) is the amount by which the current variance D(z) exceeds the smaller 
variance D(z') attainable by means of an ideal re-measurement of w.  This is what 
we mean by the "variance penalty" associated with our current knowledge.  From 
the two previous equations, we have



P(z,w  D[ cov(z,p) G p ] (25)

From Eq. (25) we see that the variance penalty is itself a variance.  Since it is a 
variance, it is guaranteed to be a positive quantity.  This was a primary objective in 
formulating our approach to the problem.  Since it is positive, we can also define a 
standard deviation penalty, in units of barns, as

(z,w) = P(z,w1/2 (26)

We now proceed to obtain an explicit expression for P(z,w that is convenient for 
computation.  From the above expressions for p and z, Eqs. (16) and (22), we have

cov(z,p) = cov[ Sa, (b - R a)] = S cov(a,b) - S D(a) RT (27)

cov(z,p) = - S D(a) RT (28)

From Eq. (25), we have then

P(z,w  cov(z,p) G D(p) G cov(z,p)T (29)

From the definition of G, we have

G D(p) G = G (30)

Now combining Eqs. (28) - (30), we have

P(z,w  S D(a) RT G R D(a) ST S [ D(a) RT G R D(a)] ST (31)



P(z,w  S H ST, where (32)

H = [ R D(a)]T D-1(w  R D(a)] (33)

In this last result, we have replaced the matrix G = D-1(p) by the high-precision 
limit D-1(w).  It is useful now to partition the covariance matrix of the parameters.  
It is easily shown that

D(v)n,n     cov(v,wnm
D(a) = [ ] (34)

cov(w,v)m,n D(w)m,m

We next calculate the intermediate matrix product R a.  Recalling Eq. (12),

    D(v)n,n cov(v,w)n,m  

R D(a) = [ 0m,n   Im,m ] [ ] (35)

   cov(w,v)m,n D(w)m,m

= [ cov(wvm,n D(wm,m ] (36)

Substituting this result into Eq. (33), and now omitting the dimensions, we have

       cov(v,w)  

H = [     ]  D-1(w  [ cov(w,v   D(w  ] (37)

       D(w)



 cov(v,w D-1(w) cov(w,v cov(v,w 
H =    [ ] (38)

cov(w,v  D(w)

For convenience, we recall from Eq. (24) that the integral z is related to the 
parameters a by

z = S a (39)

and from Eq. (33), that

P(z,w)  S H ST (40)

Eqs. (38-40) summarize our recommended calculational procedure.

If the data set a contains only data subsets aT = [g1 g2  g3 ... gj ] that are uncorrelated 

with each other (i.e., if the parameter covariance matrix D(a) is block diagonal), it 
is easy to show that

Dbd(z) =   Pbd(z,gi) (41)
i =1, j

In this special case (and only in this case), the sum over i of the variance penalties 
Pbd(z,gi) is equal to the variance of the integral quantity z.



DISCUSSION AND CONCLUSION

We note from our solution, Eqs. (38-40), that the variance penalty associated with 
the uncertainties in the data subset w involves, as expected, the variances of the 
elements of w and the correlations among them, i.e., the entire submatrix D(w), as 
well as the sensitivity of the integral quantity z to these parameters.

More interesting is the fact that the variance penalty also depends on the inverse of 
this matrix D-1(w) and on the covariance data occupying the upper right and lower 
left "corners" of D(a) in Eq. (34), namely, cov(v,w) and cov(w,v).

In contrast to the uncertainty profile approach, where L(z,i) is computed as a 
weighted sum of k covariances, the calculation of the variance penalty P(z,w) 
requires a matrix inversion and several matrix multiplications.

Nevertheless, the mathematical clarity of the variance penalty approach, with its 
guarantee of a positive result, makes it attractive for general use in characterizing 
the contribution of uncertainty in data subset w to the variance of z.
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